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1 Preliminaries

1.1 Introduction

SOFA stands for Standards Of Fundamental Astronomy. The SOFA software is a collection
of Fortran 77 and C subprograms that implement official IAU algorithms for fundamental-
astronomy computations. At the present time the SOFA software comprises 189 astronomy
routines supported by 55 utility (mainly vector/matrix) routinesṪhe core documentation for the
SOFA collection consists of classified and alphabetic lists of routine calls plus detailed preamble
comments in the source code of individual routines.

The present document looks at a selection of SOFA routines that deal with dates and times. It
provides a tutorial introduction to timekeeping and the principal time scales and calendars used
by astronomers. Short examples demonstrate how to call SOFA routines to perform the sorts
of conversions and transformations that may be needed in applications where times and dates
are involved.

1.2 Quick start

Readers already familiar with the elementary concepts can safely omit the explanatory material
and refer directly to the examples in Sections 1.5 and 4.4, and others that can be found embedded
in the text. Figure 2 shows the supported time scales and the names of the transformation
routines.

1.3 The SOFA time and date routines

The SOFA routines to be discussed are the following:

iau_CAL2JD Gregorian calendar to Julian day number
iau_D2TF decompose days into hours, minutes, seconds
iau_D2DTF decode internal format into time and date numbers
iau_DAT ∆AT (= TAI−UTC) for a given UTC date
iau_DTDB TDB−TT
iau_DTF2D encode time and date numbers into internal format
iau_EPB Julian date to Besselian epoch
iau_EPB2JD Besselian epoch to Julian date
iau_EPJ Julian date to Julian epoch
iau_EPJ2JD Julian epoch to Julian date
iau_JD2CAL Julian date to Gregorian year, month, day, fraction
iau_JDCALF Julian date to Gregorian date for formatted output
iau_TAITT TAI to TT
iau_TAIUT1 TAI to UT1
iau_TAIUTC TAI to UTC
iau_TCBTDB TCB to TDB
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iau_TCGTT TCG to TT
iau_TDBTCB TDB to TCB
iau_TDBTT TDB to TT
iau_TF2D hours, minutes, seconds into days
iau_TTTAI TT to TAI
iau_TTTCG TT to TCG
iau_TTTDB TT to TDB
iau_TTUT1 TT to UT1
iau_UT1TAI UT1 to TAI
iau_UT1TT UT1 to TT
iau_UT1UTC UT1 to UTC
iau_UTCTAI UTC to TAI
iau_UTCUT1 UTC to UT1

Detailed specifications for all of these are provided in Section 6.

1.4 Intended audience

The SOFA time routines are designed for convenient practical use, with levels of rigor that are
consistent with this goal. Inevitably, many fine details are glossed over, such as transforming
topocentric proper time to TAI, different realizations of TT, competing TDB−TT models, and so
on. Furthermore, the “proleptic” issue is largely ignored; for instance the routines will blithely
perform a transformation from TAI to TT for a date in the nineteenth century, long before
either time scale was introduced. These simplifications notwithstanding, time specialists may
nevertheless find SOFA useful as a reliable source of comparison results.

1.5 A simple example: UTC to TT

A particularly common application is when an instant in one time scale is to be referred to
another time scale. This requires three steps:

1. Call the iau_DTF2D routine to transform the date and time into the SOFA internal format.

2. Call the appropriate sequence of transformation routines (see Figure 2).

3. Call the iau_D2DTF routine to prepare the transformed time for output.

For example, to transform 2010 July 24, 11:18:07.318 (UTC) into terrestrial time TT, and report
it, rounded to 1 ms precision:
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INTEGER J, IY, IM, ID, IHMSF(4)

DOUBLE PRECISION U1, U2, A1, A2, T1, T2

* Encode UTC date and time into internal format.

CALL iau_DTF2D ( 'UTC', 2010, 7, 24, 11, 18, 7.318D0,

: U1, U2, J )

IF ( J.NE.0 ) STOP

* Transform UTC to TAI, then TAI to TT.

CALL iau_UTCTAI ( U1, U2, A1, A2, J )

IF ( J.NE.0 ) STOP

CALL iau_TAITT ( A1, A2, T1, T2, J )

IF ( J.NE.0 ) STOP

* Decode and report the TT.

CALL iau_D2DTF ( 'TT', 3, T1, T2, IY, IM, ID, IHMSF, J )

IF ( J.NE.0 ) STOP

WRITE ( *, '(I5,2(''/'',I2.2),I3,2('':'',I2.2),''.'',I3.3)')

: IY, IM, ID, IHMSF

The output is “2010/07/24 11:19:13.502”.

1.6 Abbreviations

GPS Global Positioning System
GR General relativity
IAU International Astronomical Union
IERS International Earth Rotation and reference systems Service
JD Julian date
J2000.0 2000 January 1.5 (in some specified time scale)
MJD Modified Julian date
SOFA Standards of Fundamental Astronomy
TAI International Atomic Time
TCB Barycentric Coordinate Time
TCG Geocentric Coordinate Time
TDB Barycentric Dynamical Time
TT Terrestrial Time
UT,UT1 Universal Time
UTC Coordinated Universal Time
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2 Times and dates

2.1 Timekeeping basics

Timekeeping means following an agreed recipe for measuring time, using some natural “clock”
as a basis. The most practical phenomena for this purpose are rotations and oscillations, and
for most of history the Earth’s rotation was the best available timekeeper. Because time was
synonymous with the cycle of day and night, the units used to express time intervals reflect that
choice: days, divided into hours, minutes and seconds. For larger intervals, other astronomical
phenomena play a role, in particular the orbital periods of the Earth and Moon.

Repeated attempts in the 19th century to model the motion of solar system objects, especially
the fast-moving Moon, were only partially successful. Each new theory, while reproducing
existing data accurately, would soon start to diverge from observation. The pragmatic solution
was to create a tautology by regarding the theories as clocks in their own right; in effect the
clock’s hands were the bodies of the solar system, reading out “ephemeris time”. However, once
man-made clocks became sufficiently accurate, suspicions that irregularities in Earth rotation
had all along been the limiting factor were confirmed, and laboratory time scales created by such
clocks—nowadays atomic, before that quartz—took over as the primary timekeeping standard.

2.2 Formatting conventions

A consequence of the history of timekeeping (and, in the case of the calendar, the nature of
the problem) is that the rules for expressing and transforming times and dates are somewhat
complicated and inconvenient.

To convert a time interval between hours, minutes, seconds and days, SOFA provides two rou-
tines: iau_D2TF breaks an interval into hours, minutes and seconds while iau_TF2D does the
reverse. Here is an example, where a time is expressed as a fraction of a day; a moment 0d.25
earlier is then expressed in hours, minutes and seconds, to a resolution of 1 ms:

CHARACTER PM

INTEGER IH, IM, J, IHMSF(4)

DOUBLE PRECISION S, F

* The time.

IH = 23

IM = 5

S = 11.630799D0

WRITE ( *, '(I3,'':'',I2.2,'':'',F9.6)' ) IH, IM, S

* Express as a fraction of 1 day.

CALL iau_TF2D ( '+', IH, IM, S, F, J )

IF ( J.NE.0 ) STOP
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WRITE ( *, '(F15.12)' ) F

* Six hours earlier.

F = F - 0.25D0

* Report to 1 ms precision.

CALL iau_D2TF ( 3, F, PM, IHMSF )

WRITE ( *, '(1X,I2,2('':'',I2.2),''.'',I3.3)' ) IHMSF

The output (i.e. test time, equivalent fraction of a day, time six hours earlier) is:

23:05:11.630799

0.961940171285

17:05:11.631

The familiar Gregorian calendar date, consisting of year, month and day, is designed to keep
more or less in step with the tropical year, the year of the seasons, which has a length of about
365.2422 days. Its predecessor, the Julian calendar, approximated the tropical year by using a
basic 365-day year and introducing an extra day (February 29) in every fourth year, giving an
average year length of 365.25 days. Astronomers still use the latter, the terms Julian year and
Julian century meaning exactly 365.25 and 36525 days respectively. The Gregorian calendar
provided a better approximation to the tropical year by dropping three such leap years in each
400 years, to give an average of 365.2425 days. The rule is that century years must be divisible
by 400 to be a leap year; other years are leap years if they are divisible by 4. So the year 2000
was a leap year, but 2100 will not be a leap year.

2.3 Julian date

For many purposes, calendar date is inconvenient: what is needed is a continuous count of
days. For this purpose the system of Julian day number can be used. JD zero is located about
7000 years ago, well before the historical era, and is formally defined in terms of Greenwich
noon;1 for example Julian day number 2449444 began at noon on 1994 April 1.

Julian date (JD) is the same system but with a fractional part appended; JD 2449443.5 was the
midnight on which 1994 April 1 commenced. Because of the unwieldy size of Julian Dates and
the awkwardness of the half-day offset, it is accepted practice to remove the leading ‘24’ and the
trailing ‘.5’, producing what is called the Modified Julian Date:

MJD = JD− 2400000.5.

Thus 1994 April 1 commenced at MJD 49443.0.

1Use of JD and MJD is not restricted to “Greenwich time” and can be used in conjunction with other time
scales (Section 3.2) such as TAI, TT and TDB. However, UTC poses problems because of the ambiguity that
occurs during a leap second (Section 3.5.1).
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MJD is often used in computer applications, rather than JD itself, to reduce exposure to rounding
errors. SOFA goes one step further, by always expressing JD as two double precision numbers,
the sum of which is the desired JD. The user decides how best to apportion the JD. In applica-
tions where precision is not critical, one of the two parts can simply be set to zero and the other
to the JD itself. A better compromise might be 2400000.5 as one of the numbers, and the MJD
as the other. The various SOFA routines go to some trouble to use the two parts wisely—they
are not simply added together—and the preamble comments in the various routines indicate
which split will give optimal accuracy.

The SOFA iau_CAL2JD routine expresses a given Gregorian calendar date as a two-part JD.
The iau_JD2CAL routine takes a two-part JD and breaks it into Gregorian calendar date plus
a fraction of a day. The iau_JDCALF routine does a similar job, but rounds to a specified
precision and returns the fraction as an integer, ready for use in a message or report. Here is a
demonstration, using a deliberately awkward date and time close to the end of a month:

INTEGER IY, IM, ID, IHOUR, IMIN, J, IYMDF(4)

DOUBLE PRECISION D1, D2, SEC, D, FD

* Date and time.

IY = 2008

IM = 2

ID = 29

IHOUR = 23

IMIN = 59

SEC = 59.9D0

WRITE ( *,

: '(I5,2(''/'',I2.2),I3.2,'':'',I2.2,'':'',F4.1 )' )

: IY, IM, ID, IHOUR, IMIN, SEC

* Express as two-part JD.

CALL iau_CAL2JD ( IY, IM, ID, D1, D2, J )

IF ( J.NE.0 ) STOP

CALL iau_TF2D ( '+', IHOUR, IMIN, SEC, D, J )

IF ( J.NE.0 ) STOP

D2 = D2+D

WRITE ( *, '(F10.1,'' +'',F13.6,'' ='',F15.6)' )

: D1, D2, D1+D2

* Express as calendar date and fraction of a day.

CALL iau_JD2CAL ( D1, D2, IY, IM, ID, FD, J )

D = DBLE(ID)+FD

WRITE ( *, '(I5,''/'',I2.2,''/'',F9.6)' ) IY, IM, D

IF ( J.NE.0 ) STOP

* Round to 0.001 day.

CALL iau_JDCALF ( 3, D1, D2, IYMDF, J )
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IF ( J.NE.0 ) STOP

WRITE ( *, '(I5,2(''/'',I2.2),''.'',I3.3)' ) IYMDF

The output (i.e. date and time, MJD and JD equivalents, date with fractional day, the same
but rounded) is:

2008/02/29 23:59:59.9

2400000.5 + 54525.999999 = 2454526.499999

2008/02/29.999999

2008/03/01.000

2.4 Besselian and Julian epochs

For some astronomical purposes it is convenient to work in fractional years, such that a given
date and time near the end of 2009 (for example) can be written “2009.93”.

Formerly, this was done using a system called Besselian epoch. The unit is tropical years (about
365.2422 days), the time scale is ephemeris time (Section 3.2) and the Besselian year begins
when the ecliptic longitude of the mean Sun is 280◦—which occurs near the start of the calendar
year and which is why that particular round figure was chosen. Besselian epochs are mainly
associated with older star catalogues, specifying the mean equator and equinox and hence the
celestial orientation of the equatorial coordinate system used by the catalogue concerned.

Julian epoch took over from the beginning of 1984. It uses the Julian year of exactly 365.25 days,
and the TT time scale (Section 3.2); Julian epoch 2000.0 is defined to be 2000 January 1.5, which
is JD 2451545.0 or MJD 51544.5.

The two types of epoch are denoted by a prefix ‘B’ or ‘J’, hence “B1950.0” and “J2000.0”. In
the absence of such a prefix, it can be assumed that epochs before 1984.0 are Besselian and, from
1984.0 on, Julian. The transformations between MJD and the two types of epoch are carried out
by the SOFA routines iau_EPB, iau_EPB2JD, iau_EPJ and iau_EPJ2JD. They are demonstrated
in the following code:

DOUBLE PRECISION D, E, D1, D2, iau_EPB, iau_EPJ

* Julian Date.

D = 2457073.05631D0

WRITE ( *, '(F14.5)' ) D

* Transform into Besselian epoch.

E = iau_EPB ( 0D0, D )

WRITE ( *, '('' B'',F15.10)' ) E
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* Transform back.

CALL iau_EPB2JD ( E, D1, D2 )

WRITE ( *, '(F18.9)' ) D1+D2

* The same for Julian epoch.

E = iau_EPJ ( 0D0, D )

WRITE ( *, '('' J'',F15.10)' ) E

CALL iau_EPJ2JD ( E, D1, D2 )

WRITE ( *, '(F18.9)' ) D1+D2

The output (i.e. given JD, Besselian epoch, equivalent JD, Julian epoch, equivalent JD) is:

2457073.05631

B2015.1365941021

2457073.056310000

J2015.1349933196

2457073.056310000
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3 Time scales

3.1 Time in astronomy

Calculations in any scientific discipline may involve precise time, but what sets astronomy apart
is the number and variety of time scales that have to be used. There are several reasons for
this: astronomers must continue to deal with the very phenomena that lie behind obsolete
time scales, in particular the rotation of the Earth and the motions of the planets; as new
time scales have been introduced, continuity with the past has been preserved, leaving in the
various astronomical time scales a fossil record of former offsets and rates; and in astronomical
applications the physical context of the “clock” matters, whether it is on Earth, moving or
stationary, or on a spacecraft.

3.2 SOFA support for time scales

SOFA provides routines to handle the following seven time scales, all important to astronomers:

� TAI (International Atomic Time): the official timekeeping standard.

� UTC (Coordinated Universal Time): the basis of civil time.

� UT1 (Universal Time): based on Earth rotation.

� TT (Terrestrial Time): used for solar system ephemeris look-up.2

� TCG (Geocentric Coordinate Time): used for calculations centered on the Earth in space.

� TCB (Barycentric Coordinate Time): used for calculations beyond Earth orbit.

� TDB (Barycentric Dynamical Time): a scaled form of TCB that keeps in step with TT
on the average.

Note that the above list does not include:

� UT0, UT2: specialist forms of universal time that take into account polar motion and
known seasonal effects; no longer used.

� Sidereal time—which is an angle rather than a time.3

� GMT (Greenwich mean time): an obsolete time scale that can be taken to mean either
UTC or UT1.

� ET (ephemeris time): superseded by TT and TDB.

2Strictly TDB, but for most applications TT is more than good enough. See Section 3.6.
3The same can be said of UT1; however, the interrelation between UTC and UT1 makes it clearer and more

convenient to treat the latter as a time in the present document. Sidereal time is covered in the document SOFA
Tools for Earth Attitude.
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� TDT (terrestrial dynamical time): the former name of TT.

� Civil time (BST, PDT etc.): these are UTC offset by some number of hours (or half hours,
or even quarter hours, in some cases), depending on longitude and time of year.

� Solar (sundial) time.

� GPS time: strictly speaking not itself an officially recognized time scale, but an accurate
and inexpensive way of bringing precise time into an observatory (see Section 3.4).

Of the seven time scales to be described here, one is atomic time (TAI), one is solar time (UT1),
one is an atomic/solar hybrid (UTC) and four are dynamical times (TT, TCG, TCB, TDB). Each
has a distinct role, and there are offsets of tens of seconds between some of them: when planning
an astronomical calculation it is vital to choose the right one. A particularly common mistake is
to assume that there is just one sort of precise time, namely UTC, compatible with everything
from telescope pointing (which actually requires UT1) to looking up planetary positions (which
requires TDB, which may be approximated by TT). In fact UTC itself is almost never the time
scale to use for astronomical calculations, except perhaps for record-keeping.

Figure 1 is a “route map” showing how the seven SOFA-supported time scales are related,
and how a time on one scale can be transformed into the same time on another scale. The time
scales are represented by the rectangular boxes, and their relationships are shown in the rounded
boxes. n.b. Both the diagram and the text gloss over many fine details, in order to concentrate
on practical applications.

The transformation from one time scale to the next can take a number of forms. In some cases,
for example TAI to TT, it is simply a fixed offset. In others, for example TAI to UT1, it is
an offset that depends on observations and cannot be predicted in advance (or only partially).
Some time scales, for example TT and TCG, are linearly related, with a rate change as well as an
offset. Others, for example TCG and TCB, require a 4-dimensional spacetime transformation.

3.3 Relativistic considerations

Although the majority of astronomical calculations do not explicitly involve general relativity
(GR), and can pretend that all points in space share an absolute time, it is wise to be aware of
how GR underpins the scheme set out in Figure 1.

In the spacetime coordinates (t, x, y, z) of an event, the temporal coordinate, t, is the proper
time that would be read by a (perfect) clock at that location. But in some applications, such
as the analysis of pulsar observations, it is convenient for the proper time to be remapped into
a differently curved spacetime, in which analysis is simpler and physical interpretation more
direct: this introduces the so-called coordinate time scales TCG, TCB and TDB. Proper time is
in fact the exception rather than the rule: even TAI is, strictly speaking, a coordinate time scale,
and the proper time read by the observer’s clock must in principle undergo a preliminary site-
dependent GR transformation before the diagram can be applied. But for terrestrial observers
proper time can, in practice, be regarded as the same as TAI, true to picosecond accuracy in
the case of clocks at sea level.
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Figure 1: Relationships between SOFA-supported time scales
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Note that Figure 1 depicts the time of a unique event in a single place (not necessarily on the
Earth), expressed in different forms; dubious concepts such as “the time read by a clock at the
barycenter” play no part, nor are light-time effects taken into account. For any event, anywhere,
it is possible to assign a TAI, a TT, a TDB and so on.

3.4 Atomic time: TAI

The unit of proper time is the SI second, defined as “the duration of 9,192,631,770 periods of the
radiation corresponding to the transition between the two hyperfine levels of the ground state
of the caesium 133 atom”, the latter being at 0 K and in zero magnetic field. The duration was
chosen to match the existing astronomical time scale, and is consequently a fossil of the solar
day length during the 19th century. The SI second is the unit of TAI and UTC, and is inherited
by the relativistic time scales TCG and TCB.4

TAI is a laboratory time scale, independent of astronomical phenomena apart from having been
synchronized to solar time when first introduced (at the start of 1958). It is realized through
a changing population of over 400 high-precision atomic clocks held at standards institutes in
various countries. There is an elaborate process of continuous intercomparison, leading to a
weighted average of all the clocks involved. TAI is close to proper time for an observer on the
geoid, and is an appropriate choice for terrestrial applications where continuity through UTC
leap seconds (see 3.5.1) is a requirement. It is not disseminated directly as a time service, but
can easily be realized from GPS or UTC.5 The SOFA software supports transformations between
TAI and three other time scales, namely UTC, UT1 and TT.

3.5 Solar Time: UT1 and UTC

UT1 (or plain UT) is the modern equivalent of mean solar time, and is really an angle rather than
time in the physics sense. Originally defined in terms of a point in the sky called “the fictitious
mean Sun”, UT1 is now defined through its relationship with Earth rotation angle (formerly
through sidereal time). Because the Earth’s rotation rate is slightly irregular—for geophysical
reasons—and is gradually decreasing, the UT1 second is not precisely matched to the SI second.
This makes UT1 itself unsuitable for use as a time scale in physics applications. However, some
applications do require UT1, such as pointing a telescope or antenna at a celestial target, delay
calculations in interferometers, and diurnal aberration, parallax and Doppler corrections.

UTC is a compromise between the demands of precise timekeeping and the desire to maintain
the current relationship between civil time and daylight. Since its introduction in 1960, UTC
has been kept roughly in step with UT1 by a variety of adjustments agreed in advance and

4The other two relativistic time scales, TT and TDB, can be regarded either as coordinate times in their own
right or as TCG and TCB expressed in different units.

5The Global Positioning System (GPS) maintains its own atomic time scale, steered to track UTC without
any adjustment for leap seconds implemented after 1980. Because GPS time was set to match UTC in 1980, it
inherited the TAI−UTC value from that era. Consequently, GPS time remains forever 19s behind TAI, to sub-
microsecond accuracy. The main reasons SOFA does not provide support for GPS time are (i) the transformation,
namely a fixed 19s offset, is trivial, and (ii) the danger of confusion between GPS system time itself and the time
displayed by most GPS receivers, which typically is UTC.
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then carried out in a coordinated manner by the providers of time services—hence the name.
Though rate changes were used until 1972, since then all such adjustments have been made by
occasionally inserting a whole second, called a leap second, a procedure that can be thought of
as stopping the UTC clock for a second to let the Earth catch up. Leap seconds are discussed
below.

To obtain UT1 starting from UTC, it is necessary to look up the value of ∆UT1 = UT1−UTC for
the date concerned in tables published by the International Earth Rotation and Reference Sys-
tems Service (IERS); this is then added to the UTC. The quantity UT1−UTC, which typically
changes by 1-2 ms per day, can be obtained only by observation, principally very long baseline
interferometry (VLBI) using extragalactic radio sources, though seasonal effects are present and
the IERS listings are able to predict some way into the future with adequate accuracy for most
applications.

There are SOFA routines to link UTC, UT1, TAI and TT.

3.5.1 Leap seconds

Note that in Figure 1 there are two ways of getting from TAI to UT1, one via UTC and the
other directly. In a practical application (such as a telescope control system), the direct route
has the important advantage that the offset varies in a continuous manner, whereas the route
via UTC introduces the complication of dealing with leap seconds.

At the time of writing, leap seconds are introduced as necessary to keep UT1−UTC in the
range ±0s.9. The decision is made by international agreement, and announced several months in
advance by the IERS. Leap seconds occur usually at the end of December or June. Because on the
average the solar day is now 1-2ms longer than the nominal 86,400 SI seconds, accumulating to 1s

over a period of 18months to a few years, leap seconds are in practice always positive; however,
provision exists for negative leap seconds if needed. Each time a leap second is introduced,
the offset ∆AT = TAI−UTC changes by exactly 1s. Up-to-date information on TAI−UTC is
available from the IERS.

The form of a leap second can be seen from the following description of the end of 2008:

UTC ∆UT1 ∆AT UT1
s s

2008 Dec 31 23 59 58 −0.593 +33 23 59 57.407
23 59 59 −0.593 +33 23 59 58.407
23 59 60 −0.593 +33 23 59 59.407

2009 Jan 1 00 00 00 +0.407 +34 00 00 00.407
00 00 01 +0.407 +34 00 00 01.407

Note that UTC has to be expressed as hours, minutes and seconds (or at least in seconds in a
given day) if leap seconds are to be taken into account in the correct manner. In particular, it
is inappropriate to express UTC as a Julian Date, because there will be an ambiguity during a
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leap second—so that for example 1994 June 30 23h 59m 60s.0 and 1994 July 1 00h 00m 00s.0 would
both come out as MJD 49534.00000—and because subtracting two such JDs would not yield the
correct interval in cases that contain leap seconds.

Leap seconds pose tricky problems for software writers, and consequently there are concerns that
these events put safety-critical systems at risk. The correct solution is for designers to base such
systems on TAI or some other glitch-free time scale, not UTC, but this option is often overlooked
until it is too late. As the Earth rotation slows, leap seconds will become ever more frequent,
increasing the administrative burden and multiplying the danger of disruption. This has led
to proposals to relax the ±0s.9 requirement for UT1−UTC, putting off further adjustments for
several hundred years, at which point they would amount to timezone changes. The main
danger in ceasing leap seconds is that there are in existence unknown numbers of applications
that rely on UTC being a reasonable approximation to UT1, and these will gradually fail as
the discrepancy grows. However, because it is very likely that leap seconds will soon cease, it
is essential that all new applications, however modest their accuracy needs, take UT1−UTC
properly into account.

SOFA support for leap seconds is built into the various transformations that link UTC with TAI
and UT1. These call a SOFA routine that contains the historical list of leap seconds, namely
iau_DAT (see Section 4.5.)

3.5.2 Delta T

The difference between UT1 and TT (formerly ET) is called ∆T, and in the present era can be
written out as

∆T = TT − UT1 = 32s.184 + ∆AT−∆UT1.

∆T is important for interpreting historical observations of solar system phenomena, where mod-
ern ephemerides provide the time of the event accurately but its appearance at a specified
geographical location depends on knowing the Earth orientation.

Because the Earth’s rotation is slowing due to tidal friction, and the rotation rate decreases
approximately linearly with time, ∆T increases quadratically. Empirical models for ∆T exist,
based on historical records such as eclipse sightings, but there is at present no SOFA support
in this area. However, SOFA routines are provided to transform between UT1 and TT given a
user-supplied ∆T value.

3.6 The dynamical time scales: TT, TCG, TCB and TDB

TT is a successor to the former Ephemeris Time, and is what is in practice6 used to look up
solar system ephemerides. The coordinate time scales TCG, TCB and TDB are the independent
variable in GR-based theories which describe the motions of bodies in the vicinity of the Earth

6TDB or a specific time scale belonging to the ephemeris concerned (denoted Teph) should really be used.
However, going to the trouble of computing TDB or Teph is usually not justified: even for the Moon, the error
from using TT instead of TDB is less than 1 milliarcsecond.



3.6 The dynamical time scales: TT, TCG, TCB and TDB 15

(TT, TCG) and in the solar system (TCB, TDB). Of the four, most observational astronomers
will need only TT, and perhaps TDB.

TT and TDB are close to each other (less than 2ms) and run at the same rate as TAI (exactly in
the case of TT; on the average in the case of TDB): they are the modern equivalents of ET. TCG
and TCB, used in theoretical work, run at different rates and so have long term drifts relative to
TAI. The four time scales are tied to TAI though the spacetime event 1997 January 1st 0h TAI
at the geocenter. The times of that event are as follows:

TAI 1997 Jan 1 00:00:00
TCG 1997 Jan 1 00:00:00 + 32.184 s
TCB 1997 Jan 1 00:00:00 + 32.184 s
TDB 1997 Jan 1 00:00:00 + 32.184 s − 65.5µs

3.6.1 Using solar system ephemerides: a warning

TT (or more correctly TDB) is the time scale to use when interrogating an ephemeris such as
JPL DE405, or when using published formulae to predict the position of the Earth or another
solar system body. It is an extremely common mistake to use UTC, in which case the
results will (at the time of writing) be well over a minute out. (The other common blunder is
to use the observer’s time rather than when the light left the source.)

3.6.2 TT

Terrestrial time, TT (called TDT between 1984 and 2000), is the theoretical time scale for clocks
at sea-level: for practical purposes it is tied to TAI through the fixed formula:7

TT = TAI + 32.184 s.

Calculating TT from UTC, rather than TAI, requires leap seconds to be taken into account: the
quantity ∆TT = TT−UTC for the UTC in question can be deduced from information provided
by the IERS. (See also the example in Section 1.5.)

SOFA routines are provided linking TT with TAI, TCG, TDB and UT1.

3.6.3 GCRS and BCRS, and spacetime units

TCG and TCB are the time coordinates of two IAU spacetime metrics called, respectively, the
geocentric and barycentric celestial reference systems (GCRS and BCRS). Dynamics problems

7The fixed 32s.184 offset reflects the history of trying to tie together clock timekeeping with Earth rotation and
lunar ephemerides. It retains continuity with the former ET, and represents the drift in mean solar time between
the ephemerides constructed in the 19th century and the inception of atomic time in the 1950s.
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evaluated in these reference systems use physical constants unchanged from their familiar labo-
ratory values. When TT or TDB are to be used for the time coordinate, it is possible to apply
the appropriate scaling factor to the entire metric tensor, to preserve the standard relationship
c = 299 792 458ms−1. Under these circumstances, physical values such as mass parameters have
to be scaled as well. To avoid confusion over units, it is best to embrace the view that the orig-
inal proper units, such as SI seconds and metres, still apply, projected into the new metric, and
never to attach adjectives to units themselves. For example, we might say “The TDB interval
is 21.552044 s.” or “The TDB-compatible value for GME is 3.98004356× 1014m3s−2.”.

3.6.4 TCG and TCB

Geocentric coordinate time, TCG, is appropriate for theoretical studies of geocentric ephemerides.
Its relationship with TT is this conventional linear transformation:

TCG = TT+ LG × (JDTT − TT0),

where TT0 = 2443144.5003725 (i.e. TT at 1977 January 1.0 TAI), JDTT is TT expressed as
Julian date, and LG = 6.969290134× 10−10. The rate change LG means that TCG gains about
2s.2 per century with respect to TT or TAI; this represents the combined effect on the terrestrial
clock of the gravitational potential from the Earth and the observatory’s diurnal speed.

Barycentric coordinate time, TCB, is appropriate for applications where the observer is imagined
to be stationary in the solar system but with all the matter (in particular the Sun) absent. The
transformation from TCG to TCB thus takes account of the orbital speed of the geocenter and
the gravitational potential from the Sun and planets. The difference between TCG and TCB
involves a full 4-dimensional GR transformation:

TCB− TCG = c−2

{∫ t

t0

[
v2e
2

+ Uext(xe)]dt+ ve · (x− xe)

}
+O(c−4),

where the vectors xe and ve denote the barycentric position and velocity of the geocenter, the
vector x is the barycentric position of the observer and Uext is the Newtonian potential of all of
the solar system bodies apart from the Earth, evaluated at the geocenter. In this formula, t is
TCB and t0 is chosen to be consistent with 1977 January 1.0 TAI. The neglected terms, O(c−4),
are of order 10−16 in rate for terrestrial observers. Note that

(i) Uext(xe, xe) and ve are all ephemeris-dependent, and so the resulting TCB belongs to that
particular ephemeris, and

(ii) the term ve · (x− xe) is zero at the geocenter.

The linear relationship between TT and TCG is implemented in the SOFA routines iau_TTTCG
and iau_TCGTT. SOFA does not provide direct transformations between TT and TCB, instead
working via TDB (see the next Section).
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3.6.5 TDB

The combined effect of the terrestrial observer’s orbital speed and the gravitational potential
from the Sun and planets is that a TCB clock gains on TT or TAI by nearly 0s.5 per year.
Barycentric dynamical time, TDB, suppresses this drift by applying a conventional linear trans-
formation:

TDB = TCB− LB × (JDTCB − T0)× 86400 + TDB0,

where JDTCB is TCB is expressed as Julian date, T0 = 2443144.5003725, LB = 1.550519768 ×
10−8 and TDB0 = −6.55 × 10−5 s. TDB thus functions as a coordinate time for barycentric
applications but, unlike TCB, stays close to TT on the average. The difference TDB−TT is
quasi-periodic, dominated by an annual term of amplitude 1.7 ms. For many purposes, the
difference is negligible and TT itself can be used instead of TDB. But for some applications—
an example being the long-term analysis of pulse arrival times from millisecond pulsars—the
difference cannot be neglected and use of TDB (or TCB) is essential.

When, as is usually the case, TT is available but TDB required, the full transformation chain
TT → TCG → TCB → TDB can be compressed into a single step. The resulting adjustment is
a quasi-periodic quantity8 dominated by an annual sinusoid of amplitude 1.7ms.

The linear relationship between TT and TDB is implemented in the SOFA routines iau_TTTDB
and iau_TDBTT. These require a user-supplied TDB−TT value, and the user is free to choose
whichever model or tabulation suits the application in hand. The SOFA routine iau_DTDB

provides one such model, and is accurate to a few nanoseconds; see Section 4.3.4 for more
information.

8The 1979 IAU resolution that introduced TDB stipulated that it differ from TDT by periodic terms only.
Although this describes the character of the TDB−TT quantity well, it proved impossible to pin down the
statement mathematically, and in 2006 the IAU simplified the definition of TDB by making it an ad hoc linear
transformation of TCB.
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4 The SOFA time scale transformation routines

4.1 Architecture

SOFA provides routines that link adjacent pairs of time scales in Figure 1, leaving it to the user
to select those needed to construct the desired chain. This raises the obvious question:

Why isn’t there an all-purpose SOFA routine that simply accepts a time with respect
to one nominated scale and returns the time with respect to another nominated scale?

The answer is that some of the transformations involve supplementary quantities that can be
provided only by the application, either because they cannot be predicted or because they involve
choice. A general-purpose routine would need all these quantities as arguments, even though for
any given transformation (TAI to TT say) some or all would never be accessed. The example
in Section 4.4 gives an idea of what is involved: much of the clutter comes from the TT-to-
TDB transformation, which is a function of the observer’s position and involves a complicated
and computationally heavy ephemeris series. Although the user could simply supply all the
quantities every time, just in case, this would be a nuisance, and also computationally wasteful.

Of course, a knowledgeable user would know in advance which quantities are needed and could
supply harmless values (zeroes say) for all the others; but a user with that degree of expertise can
just as easily build the required chain—and may in any case like to have the intermediate results
available. Choosing which routines to call is made easy by Figure 2 which, like Figure 1, shows
the transformation chains, but also gives the names of the 16 routines and lists their arguments.
An application needing to transform UTC into TDB, for example, could first call iau_UTCTAI,
then iau_TAITT, then iau_TTTDB. Only the final call would involve an additional quantity, in
this case TDB−TT, which the user could obtain in a number of ways, most conveniently by
calling iau_DTDB.

4.2 Internal representation of times

SOFA has an existing convention for expressing times conveniently and to high precision, namely
two-part Julian date (see Section 2.3). The time transformation routines use this convention, so
that (for example) the TAI accepted by the iau_TAITT routine is merely an ordinary SOFA two-
part JD. However, for reasons already described (Section 3.5.1), it is inappropriate to express
UTC as JD; if the straightforward iau_CAL2JD, iau_TF2D, iau_JD2CAL and iau_JDCALF routines
are used to transform between UTC and JD, there will be an ambiguity during a leap second,
the leap second and the subsequent second both returning the same range of JDs.

Rather than using a completely different representation—either for UTC as a special case or
for all the transformation routines—the SOFA designers decided instead in the case of UTC
to adapt the familiar two-part JD into a form that disguises the leap-second difficulties. This
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name transformation arguments

TAIUTC TAI ⇒ UTC TAI1, TAI2, UTC1, UTC2

UTCTAI UTC ⇒ TAI UTC1, UTC2, TAI1, TAI2

UTCUT1 UTC ⇒ UT1 UTC1, UTC2, DUT, UT1, UT2

UT1UTC UT1 ⇒ UTC UT1, UT2, DUT, UTC1, UTC2

TAIUT1 TAI ⇒ UT1 TAI1, TAI2, DTA, UT1, UT2

UT1TAI UT1 ⇒ TAI UT1, UT2, DTA, TAI1, TAI2

TTUT1 TT ⇒ UT1 TT1, TT2, DT, UT1, UT2

UT1TT UT1 ⇒ TT UT1, UT2, DT, TT1, TT2

TAITT TAI ⇒ TT TAI1, TAI2, TT1, TT2

TTTAI TT ⇒ TAI TT1, TT2, TAI1, TAI2

TTTCG TT ⇒ TCG TT1, TT2, TCG1, TCG2

TCGTT TCG ⇒ TT TCG1, TCG2, TT1, TT2

TTTDB TT ⇒ TDB TT1, TT2, DTR, TDB1, TDB2

TDBTT TDB ⇒ TT TDB1, TDB2, DTR, TT1, TT2

TDBTCB TDB ⇒ TCB TDB1, TDB2, TCB1, TCB2

TCBTDB TCB ⇒ TDB TCB1, TCB2, TDB1, TDB2

Figure 2: The SOFA time scale transformation routines. Argument pairs TAI1,TAI2
etc. are the encoded times produced by the iau_DTF2D routine. DUT is UT1−UTC, DTA is
UT1−TAI, DT is TT−UT1, and DTR is TDB−TT, all in seconds. There is also in each case
a final integer argument for the returned status (0= success). (n.b. “TAIUTC” means Fortran
routine iau_TAIUTC” etc.)



20 4 THE SOFA TIME SCALE TRANSFORMATION ROUTINES

modification gives the various time transformation routines a consistent appearance, but at the
expense of introducing a non-standard internal scheme in the UTC case.9

Two dedicated routines, iau_DTF2D and iau_D2DTF, are available to handle the entire en-
code/decode between formatted date and time—years, month, day, hour, minute and seconds—
and two-part JD (or, in the case of UTC, quasi-JD). The identifier for the time scale in question
is one of the arguments and, if it is ’UTC’, special treatment to deal with leap seconds is per-
formed. It is recommended that these routines are used for all date and time encode/decode
operations, and mandatory for UTC.

Here is example code that takes a time expressed as TAI, encodes it into the internal format
using the iau_DTF2D routine, and transforms it into UTC; the TAI and UTC are each decoded
using the iau_D2DTF routine and reported:

INTEGER J, IY, IM, ID, IHMSF(4)

DOUBLE PRECISION A1, A2, U1, U2

* Encode TAI date and time into internal format.

CALL iau_DTF2D ( 'TAI', 2009, 1, 1, 0, 0, 33.7D0,

: A1, A2, J )

IF ( J.NE.0 ) STOP

* Decode and report the TAI.

CALL iau_D2DTF ( 'TAI', 3, A1, A2, IY, IM, ID, IHMSF, J )

IF ( J.NE.0 ) STOP

WRITE ( *,

: '('' TAI'',I5,2(''/'',I2.2),I3,2('':'',I2.2),''.'',I3.3)')

: IY, IM, ID, IHMSF

* Transform TAI to UTC.

CALL iau_TAIUTC ( A1, A2, U1, U2, J )

IF ( J.NE.0 ) STOP

* Decode and report the UTC.

CALL iau_D2DTF ( 'UTC', 3, U1, U2, IY, IM, ID, IHMSF, J )

IF ( J.NE.0 ) STOP

WRITE ( *,

: '('' UTC'',I5,2(''/'',I2.2),I3,2('':'',I2.2),''.'',I3.3)')

: IY, IM, ID, IHMSF

The output is:

9The quasi-JD that SOFA uses internally to represent UTC is obtained by treating days that end in a leap
second as having a different length from usual, namely 86401s (or 86399s in the case of a negative leap second),
when forming the fractional part. The scheme has no official status outside SOFA, and it is strongly recommended
that applications do not exploit it.
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TAI 2009/01/01 0:00:33.700

UTC 2008/12/31 23:59:60.700

Note that the test time is partway through a leap second.

4.3 The supplementary quantities

In Figure 2, while some of the transformations require only a time and the identities of the
“before” and “after” time scales, others require additional information that for one reason or
another can be supplied only by the application. In the latter cases, the required supplementary
quantity has either to be obtained from a service that monitors Earth rotation or involves a
choice of model.

4.3.1 UT1 minus UTC

In Figure 2, the argument DUT is the quantity ∆UT1 = UT1−UTC, in seconds. It can be
obtained from tables published by the IERS. For example, the following extract from one of the
IERS long-term tabulations covers the date used in the example in Section 4.4, later.

INTERNATIONAL EARTH ROTATION AND REFERENCE SYSTEMS SERVICE

EARTH ORIENTATION PARAMETERS

EOP (IERS) 05 C04

FORMAT(3(I4),I7,2(F11.6),2(F12.7),2(F11.6),2(F11.6),2(F11.7),2F12.6)

**********************************************************************************

Date MJD x y UT1-UTC LOD ...

" " s s ...

(0h UTC)

1962 1 1 37665 -0.012700 0.213000 0.0326338 0.0017230 ...

1962 1 2 37666 -0.015900 0.214100 0.0320547 0.0016690 ...

1962 1 3 37667 -0.019000 0.215200 0.0315526 0.0015820 ...

:

2006 1 13 53748 0.048417 0.380702 0.3337689 -0.0002682 ...

2006 1 14 53749 0.048576 0.380378 0.3339950 -0.0001443 ...

2006 1 15 53750 0.049116 0.380121 0.3340826 -0.0000172 ...

2006 1 16 53751 0.049864 0.380044 0.3340667 0.0000669 ...

2006 1 17 53752 0.050329 0.380310 0.3339361 0.0002053 ...

:
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4.3.2 UT1 minus TAI

In Figure 2, the argument DTA is the quantity UT1−TAI, in seconds. It can be obtained by
calling the SOFA routine iau_DAT (see Section 4.5) to obtain ∆AT, getting ∆UT1 from IERS
tables, and subtracting:

UT1−TAI = ∆UT1−∆AT.

4.3.3 TT minus UT1

In Figure 2, the argument DT is the quantity ∆T = TT−UT1, in seconds. For current dates it
can be constructed accurately by knowing ∆UT1 and ∆AT and using:

∆T = 32s.184 + ∆AT−∆UT1.

However, ∆T is more commonly used in applications dealing with observations made many
decades or centuries ago, and a suitable value must be chosen by the user, either from tables,
for example in The Astronomical Almanac, or using a model. (See also Section 3.5.2.)

4.3.4 TDB minus TT

In Figure 2, the argument DTR is the quantity TDB−TT, in seconds. The quantity depends on
the adopted solar system ephemeris, and is normally obtained either by evaluating a series or
by interrogating a precomputed time ephemeris. (See also Section 3.6.5.)

The SOFA routine iau_DTDB provides a detailed model (nearly 800 terms) for TDB−TT, accu-
rate to a few nanoseconds in the present era when compared with the latest work. Its arguments
are TDB (TT can be used instead without materially affecting the results), UT1, and the ob-
server’s coordinates, expressed as longitude and the distances from the rotation axis and equator.
If the application can tolerate errors of up to 2µs, zeroes can be used for the final four argu-
ments, giving a geocentric result. The example in the next Section demonstrates use of the
DTDB routine, including what is involved in transforming the observer’s terrestrial coordinates
into the required form.

For applications where the distinction between TT and TDB matters but 50µs accuracy is
sufficient, and the date lies in the range 1980-2100, the following simplified expression can be
used:

TDB ≃ TT+ 0s.001657 sin g

where g = 6.24 + 0.017202 × (JDTT − 2451545) approximates the Earth’s mean anomaly in
radians.

4.4 A comprehensive example: transform UTC into other times

In the following example, an observer at north latitude +19◦ 28′ 52′′.5, west longitude 155◦ 55′ 59′′.6,
at sea level, on 2006 January 15 at 21:24:37.5 UTC, reports the time in all the other supported
time scales:
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INTEGER LATND, LATNM, LONWD, LONWM, J, IY, MO, ID, IH, IM,

: IHMSF(4)

DOUBLE PRECISION SLATN, SLONW, HM, ELON, PHI, XYZ(3), U, V,

: SEC, UTC1, UTC2, DUT, UT11, UT12, UT,

: TAI1, TAI2, TT1, TT2, TCG1, TCG2, DTR,

: TDB1, TDB2, TCB1, TCB2

DOUBLE PRECISION iau_DTDB

* Site terrestrial coordinates (WGS84).

LATND = 19

LATNM = 28

SLATN = 52.5D0

LONWD = 155

LONWM = 55

SLONW = 59.6

HM = 0D0

* Transform to geocentric.

CALL iau_AF2A ( '+', LATND, LATNM, SLATN, PHI, J )

IF ( J.NE.0 ) STOP

CALL iau_AF2A ( '-', LONWD, LONWM, SLONW, ELON, J )

IF ( J.NE.0 ) STOP

CALL iau_GD2GC ( 1, ELON, PHI, HM, XYZ, J )

IF ( J.NE.0 ) STOP

U = SQRT ( XYZ(1)*XYZ(1) + XYZ(2)*XYZ(2) )

V = XYZ(3)

* UTC date and time.

IY = 2006

MO = 1

ID = 15

IH = 21

IM = 24

SEC = 37.5D0

* Transform into internal format.

CALL iau_DTF2D ( 'UTC', IY, MO, ID, IH, IM, SEC, UTC1, UTC2, J )

IF ( J.NE.0 ) STOP

* UT1-UTC (s, from IERS).

DUT = +0.3341D0

* UTC -> UT1.

CALL iau_UTCUT1 ( UTC1, UTC2, DUT, UT11, UT12, J )

IF ( J.NE.0 ) STOP
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* Extract fraction for TDB-TT calculation, later.

UT = MOD ( MOD(UT11,1D0)+MOD(UT12,1D0), 1D0 ) + 0.5D0

* UTC -> TAI -> TT -> TCG.

CALL iau_UTCTAI ( UTC1, UTC2, TAI1, TAI2, J )

IF ( J.NE.0 ) STOP

CALL iau_TAITT ( TAI1, TAI2, TT1, TT2, J )

IF ( J.NE.0 ) STOP

CALL iau_TTTCG ( TT1, TT2, TCG1, TCG2, J )

IF ( J.NE.0 ) STOP

* TDB-TT (using TT as a substitute for TDB).

DTR = iau_DTDB ( TT1, TT2, UT, ELON, U/1D3, V/1D3 )

* TT -> TDB -> TCB.

CALL iau_TTTDB ( TT1, TT2, DTR, TDB1, TDB2, J )

IF ( J.NE.0 ) STOP

CALL iau_TDBTCB ( TDB1, TDB2, TCB1, TCB2, J )

IF ( J.NE.0 ) STOP

* Report.

CALL iau_D2DTF ( 'UTC', 6, UTC1, UTC2, IY, MO, ID, IHMSF, J )

IF ( J.NE.0 ) STOP

WRITE ( *, 1 ) 'UTC', IY, MO, ID, IHMSF

CALL iau_D2DTF ( 'UT1', 6, UT11, UT12, IY, MO, ID, IHMSF, J )

IF ( J.NE.0 ) STOP

WRITE ( *, 1 ) 'UT1', IY, MO, ID, IHMSF

CALL iau_D2DTF ( 'TAI', 6, TAI1, TAI2, IY, MO, ID, IHMSF, J )

IF ( J.NE.0 ) STOP

WRITE ( *, 1 ) 'TAI', IY, MO, ID, IHMSF

CALL iau_D2DTF ( 'TT', 6, TT1, TT2, IY, MO, ID, IHMSF, J )

IF ( J.NE.0 ) STOP

WRITE ( *, 1 ) 'TT ', IY, MO, ID, IHMSF

CALL iau_D2DTF ( 'TCG', 6, TCG1, TCG2, IY, MO, ID, IHMSF, J )

IF ( J.NE.0 ) STOP

WRITE ( *, 1 ) 'TCG', IY, MO, ID, IHMSF

CALL iau_D2DTF ( 'TDB', 6, TDB1, TDB2, IY, MO, ID, IHMSF, J )

IF ( J.NE.0 ) STOP

WRITE ( *, 1 ) 'TDB', IY, MO, ID, IHMSF

CALL iau_D2DTF ( 'TCB', 6, TCB1, TCB2, IY, MO, ID, IHMSF, J )

IF ( J.NE.0 ) STOP
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WRITE ( *, 1 ) 'TCB', IY, MO, ID, IHMSF

1 FORMAT ( 1X,A,I5,2('/',I2.2),I3,2(':',I2.2),'.',I6.6 )

The output is:

UTC 2006/01/15 21:24:37.500000

UT1 2006/01/15 21:24:37.834100

TAI 2006/01/15 21:25:10.500000

TT 2006/01/15 21:25:42.684000

TCG 2006/01/15 21:25:43.322690

TDB 2006/01/15 21:25:42.684373

TCB 2006/01/15 21:25:56.893952

The UT1 might be used for pointing a telescope, the TT for looking up a planet’s position in
an ephemeris, and the TDB for interpreting pulsar observations. TAI would be appropriate for
calculating long intervals between observed events, also the best way of making time-critical
applications leap-second-proof. TCG and TCB would have more specialized dynamical uses.
The UTC itself would be suitable for logging and for conversion into local time, and essentially
nothing else.

4.5 The iau_DAT routine

Applications that require explicit access to leap second information can call the iau_DAT routine.
This contains a full list of leap seconds since their inception in 1972, as well as the rate changes
used before that. Here is how to obtain TAI−UTC for a given date:

INTEGER J

DOUBLE PRECISION DELTAT

* TAI-UTC for 0h UTC on 2009 Feb 13.

CALL iau_DAT ( 2009, 2, 13, 0D0, DELTAT, J )

IF ( J.NE.0 ) STOP

WRITE ( *, '(SP,F6.1)' ) DELTAT
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The output is “+34.0”.

Note that because the iau_DAT routine has to be updated each time a new leap second is an-
nounced, there will inevitably be out-of-date copies in circulation, both in source form and inside
object libraries. Applications that call iau_DAT, or that call SOFA routines that themselves call
iau_DAT, must therefore be relinked occasionally, using object libraries known to have been re-
built from up-to-date SOFA source code. Rudimentary checks inside the iau_DAT routine do at
least protect against too large a gap between the nominated date and when the iau_DAT source
code was last changed.

However, a better solution for operational systems is to develop a local file or network based
scheme, removing any dependence on the SOFA-supplied iau_DAT. To facilitate this, in the
special case of the iau_DAT routine the standard SOFA licensing rules are relaxed: users are
entitled to implement their own iau_DAT routine as part of an application that complies with
SOFA rules. When this approach is taken, the SOFA-supplied version can still play a useful role
as a source of reliable test data.
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5 Further reading

Additional explanatory material can be found in The Astronomical Almanac and similar national
publications. An extensive glossary is available as part of The Astronomical Almanac Online:
see http://asa.hmnao.com/SecM/Glossary.html.

Detailed information on models and procedures can be found in:

� IERS Conventions (2003), D.D.McCarthy & G.Petit (eds.), Verlag des Bundesamts für
Kartographie und Geodäsie, Frankfurt am Main (2004).

and in successive updates. The following may also be useful for background reading:

� Explanatory Supplement to the Astronomical Almanac, ed. Sean E.Urban & P.Kenneth Sei-
delmann, 3rd Edition (2013), University Science Books.

The previous edition:

� Explanatory Supplement to the Astronomical Almanac, ed. P.Kenneth Seidelmann, 2nd Edi-
tion (1992), University Science Books.

also contains (Section 2.553) a discussion of ∆T formulas, with reference to the Stephenson &
Morrison and McCarthy & Babcock papers mentioned earlier.
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6 Routine specifications

The following pages present in alphabetical order details of all the SOFA routines that deal with
dates and times. Also included are a few other routines that happen to be used in the code
examples.

iau_AF2A deg, arcmin, arcsec to radians iau_AF2A

CALL :

CALL iau_AF2A ( S, IDEG, IAMIN, ASEC, RAD, J )

ACTION :

Convert degrees, arcminutes, arcseconds to radians.

GIVEN :

S c sign: ′−′ = negative, otherwise positive
IDEG i degrees
IAMIN i arcminutes
ASEC d arcseconds

RETURNED :

RAD d angle in radians
J i status: 0 = OK

1 = IDEG outside range 0-359
2 = IAMIN outside range 0-59
3 = ASEC outside range 0-59.999...

NOTES :

1. If the S argument is a string, only the leftmost character is used and no warning
status is provided.

2. The result is computed even if any of the range checks fail.

3. Negative IDEG, IAMIN and/or ASEC produce a warning status, but the absolute value
is used in the conversion.

4. If there are multiple errors, the status value reflects only the first, the smallest taking
precedence.



29

iau_CAL2JD Gregorian calendar to Julian Date iau_CAL2JD

CALL :

CALL iau_CAL2JD ( IY, IM, ID, DJM0, DJM, J )

ACTION :

Gregorian Calendar to Julian Date.

GIVEN :

IY,IM,ID i year, month, day in Gregorian calendar (Note 1)

RETURNED :

DJM0 d MJD zero-point: always 2400000.5D0
DJM d Modified Julian Date for 0h

J i status: 0 = OK
−1 = bad year (Note 3; JD not computed)
−2 = bad month (JD not computed)
−3 = bad day (JD computed)

NOTES :

1. The algorithm used is valid from −4800 March 1, but this implementation rejects
dates before −4799 January 1.

2. The Julian Date is returned in two pieces, in the usual SOFA manner, which is
designed to preserve time resolution. The Julian Date is available as a single number
by adding DJM0 and DJM.

3. In early eras the conversion is from the “Proleptic Gregorian Calendar”; no account
is taken of the date(s) of adoption of the Gregorian Calendar, nor is any AD/BC
numbering convention observed.

REFERENCE :

Seidelmann, P.K. (Ed.) (1992), Explanatory Supplement to the Astronomical Almanac,
University Science Books, Section 12.92 (p604).
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iau_D2DTF format for output a two-part JD iau_D2DTF

CALL :

CALL iau_D2DTF ( SCALE, NDP, D1, D2, IY, IM, ID, IHMSF, J )

ACTION :

Format for output a two-part Julian Date (or in the case of UTC a quasi-JD form that
includes special provision for leap seconds).

GIVEN :

SCALE c*(*) time scale ID (Note 1)
NDP i resolution (Note 2)
D1,D2 d time as a two-part Julian Date (Notes 3,4)

RETURNED :

IY,IM,ID i year, month, day in Gregorian calendar (Note 5)
IHMSF i(4) hours, minutes, seconds, fraction (Note 1)
J i status: +1 = dubious year (Note 5)

0 = OK
−1 = unacceptable date (Note 6)

NOTES :

1. SCALE identifies the time scale. Only the value ′UTC ′ (in upper case) is significant,
and enables handling of leap seconds (see Note 4).

2. NDP is the number of decimal places in the seconds field, and can have negative as
well as positive values, such as:

NDP resolution
-4 1 00 00

-3 0 10 00

-2 0 01 00

-1 0 00 10

0 0 00 01

1 0 00 00.1

2 0 00 00.01

3 0 00 00.001

The limits are platform dependent, but a safe range is −5 to +9.

3. D1+D2 is Julian Date, apportioned in any convenient way between the two arguments,
for example where D1 is the Julian Day Number and D2 is the fraction of a day. In
the case of UTC, where the use of JD is problematical, special conventions apply: see
the next note.
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4. JD cannot unambiguously represent UTC during a leap second unless special mea-
sures are taken. The SOFA internal convention is that the quasi-JD day represents
UTC days whether the length is 86399, 86400 or 86401 SI seconds. In the 1960-1972
era there were smaller jumps (in either direction) each time the linear UTC(TAI)
expression was changed, and these “mini-leaps” are also included in the SOFA con-
vention.

5. The warning status “dubious year” flags UTCs that predate the introduction of the
time scale or that are too far in the future to be trusted. See iau_DAT for further
details.

6. For calendar conventions and limitations, see iau_CAL2JD.
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iau_D2TF days to hours, minutes, seconds iau_D2TF

CALL :

CALL iau_D2TF ( NDP, DAYS, SIGN, IHMSF )

ACTION :

Decompose days to hours, minutes, seconds, fraction.

GIVEN :

NDP i resolution (Note 1)
DAYS d interval in days

RETURNED :

SIGN c ′+′ or ′−′

IHMSF i(4) hours, minutes, seconds, fraction

NOTES :

1. NDP is interpreted as follows:

NDP resolution
: ...0000 00 00

-7 1000 00 00

-6 100 00 00

-5 10 00 00

-4 1 00 00

-3 0 10 00

-2 0 01 00

-1 0 00 10

0 0 00 01

1 0 00 00.1

2 0 00 00.01

3 0 00 00.001

: 0 00 00.000...

2. The largest positive useful value for NDP is determined by the size of DAYS, the format
of DOUBLE PRECISION numbers on the target platform, and the risk of overflowing
IHMSF(4). On a typical platform, for DAYS up to 1D0, the available floating-point
precision might correspond to NDP = 12. However, the practical limit is typically
NDP = 9, set by the capacity of a 32-bit capacity of a 32-bit IHMSF(4).

3. The absolute value of DAYS may exceed 1D0. In cases where it does not, it is up to
the caller to test for and handle the case where DAYS is very nearly 1D0 and rounds
up to 24 hours, by testing for IHMSF(1) .EQ. 24 and setting IHMSF(1-4) to zero.
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iau_DAT calculate TAI−UTC iau_DAT

CALL :

CALL iau_DAT ( IY, IM, ID, FD, DELTAT, J )

ACTION :

For a given UTC date, calculate ∆AT = TAI−UTC.

GIVEN :

IY i UTC: year (Notes 1 and 2)
IM i month (Note 2)
ID i day (Notes 2 and 3)
FD d fraction of day (Note 4)

RETURNED :

DELTAT d TAI minus UTC, seconds
J i status: +1 = dubious year (Note 1)

0 = OK
−1 = bad year
−2 = bad month
−3 = bad day (Note 3)
−4 = bad fraction (Note 4)
−5 = internal error (Note 5)

NOTES :

1. UTC began at 1960 January 1.0 (JD 2436934.5) and it is improper to call the routine
with an earlier date. If this is attempted, zero is returned together with a warning
status.

Because leap seconds cannot, in principle, be predicted in advance, a reliable check for
dates beyond the valid range is impossible. To guard against gross errors, a year five
or more after the release year of the present routine (see parameter IYV) is considered
dubious. In this case a warning status is returned but the result is computed in the
normal way.

For both too-early and too-late years, the warning status is J = +1. This is distinct
from the error status J = −1, which signifies a year so early that JD could not be
computed.

2. If the specified date is for a day which ends with a leap second, the TAI−UTC value
returned is for the period leading up to the leap second. If the date is for a day which
begins as a leap second ends, the TAI−UTC returned is for the period following the
leap second.
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3. The day number must be in the normal calendar range, for example 1 through 30
for April. The “almanac” convention of allowing such dates as January 0 and De-
cember 32 is not supported in this routine, in order to avoid confusion near leap
seconds.

4. The fraction of day is used only for dates before the introduction of leap seconds, the
first of which occurred at the end of 1971. It is tested for validity (0 to 1 is the valid
range) even if not used; if invalid, zero is used and status J=−4 is returned. For
many applications, setting FD to zero is acceptable; the resulting error is always less
than 3 ms (and occurs only pre-1972).

5. The status value returned in the case where there are multiple errors refers to the
first error detected. For example, if the month and day are 13 and 32 respectively,
J=−2 (bad month) will be returned. The “internal error” status refers to a case that
is impossible but causes some compilers to issue a warning.

6. In cases where a valid result is not available, zero is returned.

REFERENCES :

1. For dates from 1961 January 1 onwards, the expressions from the file
ftp://maia.usno.navy.mil/ser7/TAI-UTC.dat are used.

2. The 5ms timestep at 1961 January 1 is taken from 2.58.1 (p87) of Explanatory Sup-
plement to the Astronomical Almanac, ed. P.Kenneth Seidelmann (1992), University
Science Books.
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iau_DTDB approximation to TDB−TT iau_DTDB

CALL :

CALL iau_DTDB ( DATE1, DATE2, UT, ELONG, U, V )

ACTION :

An approximation to TDB−TT, the difference between barycentric dynamical time and
terrestrial time, for an observer on the Earth.

GIVEN :

DATE1 d TDB as a two-part. . .
DATE2 d . . . Julian Date (Notes 1-3)
UT d universal time (UT1, fraction of one day)
ELONG d longitude (east positive, radians)
U d distance from Earth spin axis (km)
V d distance north of equatorial plane (km)

RETURNED (function value) :

d TDB−TT (seconds)

NOTES :

1. The TDB date DATE1+DATE2 is a Julian Date, apportioned in any convenient way
between the arguments DATE1 and DATE2. For example, JD(TDB)=2450123.7 could
be expressed in any of these ways, among others:

DATE1 DATE2

2450123.7D0 0D0 (JD method)
2451545.0D0 −1421.3D0 (J2000 method)
2400000.5D0 50123.2D0 (MJD method)
2450123.5D0 0.2D0 (date & time method)

The JD method is the most natural and convenient to use in cases where the loss of
several decimal digits of resolution is acceptable. The J2000 method is best matched
to the way the argument is handled internally and will deliver the optimum resolution.
The MJD method and the date & time methods are both good compromises between
resolution and convenience. For most applications of this routine the choice will not
be at all critical.

Although the date is, formally, barycentric dynamical time (TDB), the terrestrial
dynamical time (TT) can be used with no practical effect on the accuracy of the
prediction.

2. TT can be regarded as a coordinate time that is realized as an offset of 32.184s from
International Atomic Time, TAI. TT is a specific linear transformation of geocentric
coordinate time TCG, which is the time scale for the Geocentric Celestial Reference
System, GCRS.
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3. TDB is a coordinate time, and is a specific linear transformation of barycentric co-
ordinate time TCB, which is the time scale for the Barycentric Celestial Reference
System, BCRS.

4. The difference TCG−TCB depends on the masses and positions of the bodies of the
solar system and the velocity of the Earth. It is dominated by a rate difference, the
residual being of a periodic character. The latter, which is modeled by the present rou-
tine, comprises a main (annual) sinusoidal term of amplitude approximately 0.00166s,
plus planetary terms up to about 20µs, and lunar and diurnal terms up to 2µs. These
effects come from the changing transverse Doppler effect and gravitational red-shift
as the observer (on the Earth’s surface) experiences variations in speed (with respect
to the BCRS) and gravitational potential.

5. TDB can be regarded as the same as TCB but with a rate adjustment to keep it
close to TT, which is convenient for many applications. The history of successive
attempts to define TDB is set out in Resolution 3 adopted by the IAU General
Assembly in 2006, which defines a fixed TDB(TCB) transformation that is consistent
with contemporary solar-system ephemerides. Future ephemerides will imply slightly
changed transformations between TCG and TCB, which could introduce a linear drift
between TDB and TT; however, any such drift is unlikely to exceed 1ns per century.

6. The geocentric TDB−TT model used in the present routine is that of Fairhead &
Bretagnon (1990), in its full form. It was originally supplied by Fairhead (private
communications with P.T.Wallace, 1990) as a Fortran subroutine. The present rou-
tine contains an adaptation of the Fairhead code. The numerical results are essentially
unaffected by the changes, the differences with respect to the Fairhead & Bretagnon
original being at the 10−20s level.

The topocentric part of the model is from Moyer (1981) and Murray (1983), with
fundamental arguments adapted from Simon et al. 1994. It is an approximation to
the expression (v/c).(r/c), where v is the barycentric velocity of the Earth, r is the
geocentric position of the observer and c is the speed of light.

By supplying zeroes for u and v, the topocentric part of the model can be nullified,
and the routine will return the Fairhead & Bretagnon result alone.

7. During the interval 1950-2050, the absolute accuracy is better than ±3ns relative to
time ephemerides obtained by direct numerical integrations based on the JPL DE405
solar system ephemeris.

8. It must be stressed that the present routine is merely a model, and that numerical
integration of solar-system ephemerides is the definitive method for predicting the
relationship between TCG and TCB and hence between TT and TDB.

REFERENCES :

1. Fairhead, L., & Bretagnon, P., Astron.Astrophys., 229, 240-247 (1990).

2. IAU 2006 Resolution 3.

3. McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note
No. 32, BKG (2004).

4. Moyer, T.D., Cel.Mech., 23, 33 (1981).
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5. Murray, C.A., Vectorial Astrometry, Adam Hilger (1983).

6. Seidelmann, P.K. (Ed.) (1992), Explanatory Supplement to the Astronomical Al-
manac, University Science Books, Chapter 2.

7. Simon, J.L., Bretagnon, P., Chapront, J., Chapront-Touzé, M., Francou, G. & Laskar,
J., Astron.Astrophys., 282, 663-683 (1994).
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iau_DTF2D date and time fields to two-part JD iau_DTF2D

CALL :

CALL iau_DTF2D ( SCALE, IY, IM, ID, IHR, IMN, SEC, D1, D2, J )

ACTION :

Encode date and time fields into two-part Julian Date (or in the case of UTC a quasi-JD
form that includes special provision for leap seconds).

GIVEN :

SCALE c time scale ID (Note 1)
IY,IM,ID i year, month, day in Gregorian calendar (Note 2)
IHR,IMN i hour, minute
SEC d seconds

RETURNED :

D1,D2 d two-part Julian Date (Notes 3,4)
J i status: +3 = both of next two

+2 = time is after end of day (Note 5)
+1 = dubious year (Note 6)
0 = OK

−1 = bad year
−2 = bad month
−3 = bad day (Note 3)
−4 = bad minute
−5 = bad second (<0)

NOTES :

1. SCALE identifies the time scale. Only the value ′UTC ′ (in upper case) is significant,
and enables handling of leap seconds (see Note 4).

2. For calendar conventions and limitations, see iau_CAL2JD.

3. The sum of the results, D1+D2, is Julian Date, where normally D1 is the Julian Day
Number and D2 is the fraction of a day. In the case of UTC, where the use of JD is
problematical, special conventions apply: see the next note.

4. JD cannot unambiguously represent UTC during a leap second unless special mea-
sures are taken. The SOFA internal convention is that the quasi-JD day represents
UTC days whether the length is 86399, 86400 or 86401 SI seconds. In the 1960-1972
era there were smaller jumps (in either direction) each time the linear UTC(TAI)
expression was changed, and these “mini-leaps” are also included in the SOFA con-
vention.
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5. The warning status “time is after end of day” usually means that the SEC argument
is greater than 60D0. However, in a day ending in a leap second the limit changes to
61D0 (or 59D0 in the case of a negative leap second).

6. The warning status “dubious year” flags UTCs that predate the introduction of the
time scale or that are too far in the future to be trusted. See iau_DAT for further
details.

7. Only in the case of continuous and regular time scales (TAI, TT, TCG, TCB and
TDB) is the result D1+D2 a Julian Date, strictly speaking. In the other cases (UT1
and UTC) the result must be used with circumspection; in particular the difference
between two such results cannot be interpreted as a precise time interval.
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iau_EPB Julian Date to Besselian Epoch iau_EPB

CALL :

D = iau_EPB ( DJ1, DJ2 )

ACTION :

Julian Date to Besselian Epoch.

GIVEN :

DJ1,DJ2 d Julian Date (see note)

RETURNED (function value) :

d Besselian Epoch

NOTE :

The Julian Date is supplied in two pieces, in the usual SOFA manner, which is designed
to preserve time resolution. The Julian Date is available as a single number by adding DJ1

and DJ2. The maximum resolution is achieved if DJ1 is 2451545D0 (J2000.0).

REFERENCE :

Lieske, J.H., 1979. Astron.Astrophys., 73, 282.
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iau_EPB2JD Besselian Epoch to Julian Date iau_EPB2JD

CALL :

CALL iau_EPB2JD ( EPB, DJM0, DJM )

ACTION :

Besselian Epoch to Julian Date.

GIVEN :

EPB d Besselian Epoch (e.g. 1957.3D0)

RETURNED :

DJM0 d MJD zero-point: always 2400000.5D0
DJM d Modified Julian Date

NOTE :

The Julian Date is returned in two pieces, in the usual SOFA manner, which is designed
to preserve time resolution. The Julian Date is available as a single number by adding
DJM0 and DJM.
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iau_EPJ Julian Date to Julian Epoch iau_EPJ

CALL :

D = iau_EPJ ( DJ1, DJ2 )

ACTION :

Julian Date to Julian Epoch.

GIVEN :

DJ1,DJ2 d Julian Date (see note)

RETURNED (function value) :

d Julian Epoch

NOTE :

The Julian Date is supplied in two pieces, in the usual SOFA manner, which is designed
to preserve time resolution. The Julian Date is available as a single number by adding DJ1

and DJ2. The maximum resolution is achieved if DJ1 is 2451545D0 (J2000.0).

REFERENCE :

Lieske, J.H., 1979. Astron.Astrophys., 73, 282.
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iau_EPJ2JD Julian Epoch to Julian Date iau_EPJ2JD

CALL :

CALL iau_EPJ2JD ( EPJ, DJM0, DJM )

ACTION :

Julian Epoch to Julian Date.

GIVEN :

EPJ d Julian Epoch (e.g. 1996.8D0)

RETURNED :

DJM0 d MJD zero-point: always 2400000.5D0
DJM d Modified Julian Date

NOTE :

The Julian Date is returned in two pieces, in the usual SOFA manner, which is designed
to preserve time resolution. The Julian Date is available as a single number by adding
DJM0 and DJM.
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iau_GD2GC geodetic to geocentric iau_GD2GC

CALL :

CALL iau_GD2GC ( N, ELONG, PHI, HEIGHT, XYZ, J )

ACTION :

Transform geodetic coordinates to geocentric using the specified reference ellipsoid.

GIVEN :

N i ellipsoid identifier (Note 1)
ELONG d longitude (radians, east positive)
PHI d latitude (geodetic, radians, Note 3)
HEIGHT d height above ellipsoid (geodetic, Notes 2,3)

RETURNED :

XYZ d(3) geocentric vector (Note 2)
int status: 0 = OK

−1 = illegal identifier (Note 3)
−2 = illegal case (Note 3)

NOTES :

1. The identifier N is a number that specifies the choice of reference ellipsoid. The fol-
lowing are supported:

N ellipsoid
1 WGS84

2 GRS80

3 WGS72

The number N has no significance outside the SOFA software.

2. The height (HEIGHT, given) and the geocentric vector (XYZ, returned) are in meters.

3. No validation is performed on the arguments ELONG, PHI and HEIGHT. An error status
J = −1 means that the identifier N is illegal. An error status J = −2 protects against
cases that would lead to arithmetic exceptions. In all error cases, XYZ is set to zeros.

4. The inverse transformation is performed in the routine iau_GC2GD.
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iau_JD2CAL JD to year, month, day, fraction iau_JD2CAL

CALL :

CALL iau_JD2CAL ( DJ1, DJ2, IY, IM, ID, FD, J )

ACTION :

Julian Date to Gregorian year, month, day, and fraction of a day.

GIVEN :

DJ1,DJ2 d Julian Date (Notes 1, 2)

RETURNED :

IY i year
IM i month
ID i day
FD d fraction of day
J i status: 0 = OK

−1 = unacceptable date (Note 1)

NOTES :

1. The earliest valid date is −68569.5 (−4900 March 1). The largest value accepted is
109.

2. The Julian Date is apportioned in any convenient way between the arguments DJ1 and
DJ2. For example, JD=2450123.7 could be expressed in any of these ways, among
others:

DJ1 DJ2

2450123.7D0 0D0 (JD method)
2451545.0D0 −1421.3D0 (J2000 method)
2400000.5D0 50123.2D0 (MJD method)
2450123.5D0 0.2D0 (date & time method)

Separating integer and fraction uses the “compensated summation” algorithm of
Kahan-Neumaier to preserve as much precision as possible irrespective of the JD1+JD2
apportionment.

3. In early eras the conversion is from the “Proleptic Gregorian Calendar”; no account
is taken of the date(s) of adoption of the Gregorian Calendar, nor is the AD/BC
numbering convention observed.

REFERENCES :

1. Seidelmann, P.K. (Ed.) (1992), Explanatory Supplement to the Astronomical Al-
manac, University Science Books, Section 12.92 (p604).

2. Klein, A., A Generalized Kahan-Babuska-Summation-Algorithm, Computing, 76, 279-
293 (2006), Section 3.
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iau_JDCALF JD to calendar report fields iau_JDCALF

CALL :

CALL iau_JDCALF ( NDP, DJ1, DJ2, IYMDF, J )

ACTION :

Julian Date to Gregorian Calendar, expressed in a form convenient for formatting mes-
sages: rounded to a specified precision, and with the fields stored in a single array.

GIVEN :

NDP i number of decimal places of days in fraction
DJ1,DJ2 d DJ1+DJ2 = Julian Date (Note 1)

RETURNED :

IYMDF i(4) year, month, day, fraction in Gregorian calendar
J i status: +1 = NDP not 0-9 (interpreted as 0)

0 = OK
−1 = date out of range

NOTES :

1. The Julian Date is apportioned in any convenient way between the arguments DJ1 and
DJ2. For example, JD=2450123.7 could be expressed in any of these ways, among
others:

DJ1 DJ2

2450123.7D0 0D0 (JD method)
2451545.0D0 −1421.3D0 (J2000 method)
2400000.5D0 50123.2D0 (MJD method)
2450123.5D0 0.2D0 (date & time method)

2. In early eras the conversion is from the “Proleptic Gregorian Calendar”; no account
is taken of the date(s) of adoption of the Gregorian Calendar, nor is the AD/BC
numbering convention observed.

3. Refer to the routine iau_JD2CAL.

4. The number of decimal places NDP should be 4 or less if internal overflows are to be
avoided on platforms which use 16-bit integers.

REFERENCE :

Seidelmann, P.K. (Ed.) (1992), Explanatory Supplement to the Astronomical Almanac,
University Science Books, Section 12.92 (p604).
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iau_TAITT TAI to TT iau_TAITT

CALL :

CALL iau_TAITT ( TAI1, TAI2, TT1, TT2, J )

ACTION :

Time scale transformation: International Atomic Time, TAI, to Terrestrial Time, TT.

GIVEN :

TAI1,TAI2 d TAI as a two-part Julian Date

RETURNED :

TT1,TT2 d TT as a two-part Julian Date
J i status: 0 = OK

NOTE :

TAI1+TAI2 is Julian Date, apportioned in any convenient way between the two arguments,
for example where TAI1 is the Julian Day Number and TAI2 is the fraction of a day. The
returned TT1, TT2 follow suit.

REFERENCES :

1. McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note
No. 32, BKG (2004).

2. Seidelmann, P.K. (Ed.) (1992), Explanatory Supplement to the Astronomical Al-
manac, University Science Books.
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iau_TAIUT1 TAI to UT1 iau_TAIUT1

CALL :

CALL iau_TAIUT1 ( TAI1, TAI2, DTA, UT11, UT12, J )

ACTION :

Time scale transformation: International Atomic Time, TAI, to Universal Time, UT1.

GIVEN :

TAI1,TAI2 d TAI as a two-part Julian Date
DTA d UT1−TAI in seconds

RETURNED :

UT11,UT12 d UT1 as a two-part Julian Date
J i status: 0 = OK

NOTES :

1. TAI1+TAI2 is Julian Date, apportioned in any convenient way between the two ar-
guments, for example where TAI1 is the Julian Day Number and TAI2 is the fraction
of a day. The returned UT11, UT12 follow suit.

2. The argument DTA, i.e. UT1−TAI, is an observed quantity, and is available from
IERS tabulations.

REFERENCE :

Seidelmann, P.K. (Ed.) (1992), Explanatory Supplement to the Astronomical Almanac,
University Science Books
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iau_TAIUTC TAI to UTC iau_TAIUTC

CALL :

CALL iau_TAIUTC ( TAI1, TAI2, UTC1, UTC2, J )

ACTION :

Time scale transformation: International Atomic Time, TAI, to Coordinated Universal
Time, UTC.

GIVEN :

TAI1,TAI2 d TAI as a two-part Julian Date (Note 1)

RETURNED :

UTC1,UTC2 d UTC as a two-part quasi Julian Date (Notes 1-3)
J i status: +1 = dubious year (Note 4)

0 = OK
−1 = unacceptable date

NOTES :

1. TAI1+TAI2 is Julian Date, apportioned in any convenient way between the two ar-
guments, for example where TAI1 is the Julian Day Number and TAI2 is the fraction
of a day. The returned UTC1 and UTC2 form an analogous pair, except that a special
convention is used, to deal with the problem of leap seconds – see the next note.

2. JD cannot unambiguously represent UTC during a leap second unless special mea-
sures are taken. The convention in the present routine is that the JD day represents
UTC days whether the length is 86399, 86400 or 86401 SI seconds. In the 1960-1972
era there were smaller jumps (in either direction) each time the linear UTC(TAI)
expression was changed, and these “mini-leaps” are also included in the SOFA con-
vention.

3. The routine iau_D2DTF can be used to transform the UTC quasi-JD into calendar
date and clock time, including UTC leap second handling.

4. The warning status “dubious year” flags UTCs that predate the introduction of the
time scale or that are too far in the future to be trusted. See the routine iau_DAT for
further details.

REFERENCES :

1. McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note
No. 32, BKG (2004).

2. IAU 2000 Resolution B1.9.
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iau_TCBTDB TCB to TDB iau_TCBTDB

CALL :

CALL iau_TCBTDB ( TCB1, TCB2, TDB1, TDB2, J )

ACTION :

Time scale transformation: Barycentric Coordinate Time, TCB, to Barycentric Dynamical
Time, TDB.

GIVEN :

TCB1,TCB2 d TCB as a two-part Julian Date

RETURNED :

TDB1,TDB2 d TDB as a two-part Julian Date
J i status: 0 = OK

NOTES :

1. TCB1+TCB2 is Julian Date, apportioned in any convenient way between the two ar-
guments, for example where TCB1 is the Julian Day Number and TCB2 is the fraction
of a day. The returned TDB1, TDB2 follow suit.

2. The 2006 IAU General Assembly introduced a conventional linear transformation
between TDB and TCB. This transformation compensates for the drift between TCB
and terrestrial time TT, and keeps TDB approximately centered on TT. Because the
relationship between TT and TCB depends on the adopted solar system ephemeris,
the degree of alignment between TDB and TT over long intervals will vary according
to which ephemeris is used. Former definitions of TDB attempted to avoid this
problem by stipulating that TDB and TT should differ only by periodic effects. This
is a good description of the nature of the relationship but eluded precise mathematical
formulation. The conventional linear relationship adopted in 2006 sidestepped these
difficulties whilst delivering a TDB that in practice was consistent with values before
that date.

3. TDB is essentially the same as Teph, the time argument for the JPL solar system
ephemerides.

REFERENCE :

IAU 2006 Resolution B3.
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iau_TCGTT TCG to TT iau_TCGTT

CALL :

CALL iau_TCGTT ( TCG1, TCG2, TT1, TT2, J )

ACTION :

Time scale transformation: Geocentric Coordinate Time, TCG, to Terrestrial Time, TT.

GIVEN :

TCG1,TCG2 d TCG as a two-part Julian Date

RETURNED :

TT1,TT2 d TT as a two-part Julian Date
J i status: 0 = OK

NOTE :

TCG1+TCG2 is Julian Date, apportioned in any convenient way between the two arguments,
for example where TCG1 is the Julian Day Number and TCG2 is the fraction of a day. The
returned TT1, TT2 follow suit.

REFERENCES :

1. McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note
No. 32, BKG (2004).

2. IAU 2000 Resolution B1.9.
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iau_TDBTCB TDB to TCB iau_TDBTCB

CALL :

CALL iau_TDBTCB ( TDB1, TDB2, TCB1, TCB2, J )

ACTION :

Time scale transformation: Barycentric Dynamical Time, TDB, to Barycentric Coordinate
Time, TCB.

GIVEN :

TDB1,TDB2 d TDB as a two-part Julian Date

RETURNED :

TCB1,TCB2 d TCB as a two-part Julian Date
J i status: 0 = OK

NOTES :

1. TDB1+TDB2 is Julian Date, apportioned in any convenient way between the two ar-
guments, for example where TDB1 is the Julian Day Number and TDB2 is the fraction
of a day. The returned TCB1, TCB2 follow suit.

2. The 2006 IAU General Assembly introduced a conventional linear transformation
between TDB and TCB. This transformation compensates for the drift between TCB
and terrestrial time TT, and keeps TDB approximately centered on TT. Because the
relationship between TT and TCB depends on the adopted solar system ephemeris,
the degree of alignment between TDB and TT over long intervals will vary according
to which ephemeris is used. Former definitions of TDB attempted to avoid this
problem by stipulating that TDB and TT should differ only by periodic effects. This
is a good description of the nature of the relationship but eluded precise mathematical
formulation. The conventional linear relationship adopted in 2006 sidestepped these
difficulties whilst delivering a TDB that in practice was consistent with values before
that date.

3. TDB is essentially the same as Teph, the time argument for the JPL solar system
ephemerides.

REFERENCE :

IAU 2006 Resolution B3.
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iau_TDBTT TDB to TT iau_TDBTT

CALL :

CALL iau_TDBTT ( TDB1, TDB2, DTR, TT1, TT2, J )

ACTION :

Time scale transformation: Barycentric Dynamical Time, TDB, to Terrestrial Time, TT.

GIVEN :

TDB1,TDB2 d TDB as a two-part Julian Date
DTR d TDB−TT in seconds

RETURNED :

TT1,TT2 d TT as a two-part Julian Date
J i status: 0 = OK

NOTES :

1. TDB1+TDB2 is Julian Date, apportioned in any convenient way between the two ar-
guments, for example where TDB1 is the Julian Day Number and TDB2 is the fraction
of a day. The returned TT1, TT2 follow suit.

2. The argument DTR represents the quasi-periodic component of the GR transformation
between TT and TCB. It is dependent upon the adopted solar-system ephemeris,
and can be obtained by numerical integration, by interrogating a precomputed time
ephemeris or by evaluating a model such as that implemented in the SOFA routine
iau_DTDB. The quantity is dominated by an annual term of 1.7 ms amplitude.

3. TDB is essentially the same as Teph, the time argument for the JPL solar system
ephemerides.

REFERENCES :

1. McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note
No. 32, BKG (2004).

2. IAU 2000 Resolution 3.
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iau_TF2D hours, minutes, seconds to days iau_TF2D

CALL :

CALL iau_TF2D ( S, IHOUR, IMIN, SEC, DAYS, J )

ACTION :

Convert hours, minutes, seconds to days.

GIVEN :

S c sign: ’-’ = negative, otherwise positive
IHOUR i hours
IMIN i minutes
SEC d seconds

RETURNED :

DAYS d interval in days
J i status: 0 = OK

1 = IHOUR outside range 0-23
2 = IMIN outside range 0-59
3 = SEC outside range 0-59.999...

NOTES :

1. If the S argument is a string, only the leftmost character is used and no warning
status is provided.

2. The result is computed even if any of the range checks fail.

3. Negative IHOUR, IMIN and/or SEC produce a warning status, but the absolute value
is used in the conversion.

4. If there are multiple errors, the status value reflects only the first, the smallest taking
precedence.
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iau_TTTAI TT to TAI iau_TTTAI

CALL :

CALL iau_TTTAI ( TT1, TT2, TAI1, TAI2, J )

ACTION :

Time scale transformation: Terrestrial Time, TT, to International Atomic Time, TAI.

GIVEN :

TT1,TT2 d TT as a two-part Julian Date

RETURNED :

TAI1,TAI2 d TAI as a two-part Julian Date
J i status: 0 = OK

NOTE :

TT1+TT2 is Julian Date, apportioned in any convenient way between the two arguments,
for example where TT1 is the Julian Day Number and TT2 is the fraction of a day. The
returned TAI1,TAI2 follow suit.

REFERENCES :

1. McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note
No. 32, BKG (2004).

2. Seidelmann, P.K. (Ed.) (1992), Explanatory Supplement to the Astronomical Al-
manac, University Science Books.
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iau_TTTCG TT to TCG iau_TTTCG

CALL :

CALL iau_TTTCG ( TT1, TT2, TCG1, TCG2, J )

ACTION :

Time scale transformation: Terrestrial Time, TT, to Geocentric Coordinate Time, TCG.

GIVEN :

TT1,TT2 d TT as a two-part Julian Date

RETURNED :

TCG1,TCG2 d TCG as a two-part Julian Date
J i status: 0 = OK

NOTE :

TT1+TT2 is Julian Date, apportioned in any convenient way between the two arguments,
for example where TT1 is the Julian Day Number and TT2 is the fraction of a day. The
returned TCG1, TCG2 follow suit.

REFERENCES :

1. McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note
No. 32, BKG (2004).

2. IAU 2000 Resolution B1.9.
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iau_TTTDB TT to TDB iau_TTTDB

CALL :

CALL iau_TTTDB ( TT1, TT2, DTR, TDB1, TDB2, J )

ACTION :

Time scale transformation: Terrestrial Time, TT, to Barycentric Dynamical Time, TDB.

GIVEN :

TT1,TT2 d TT as a two-part Julian Date
DTR d TDB−TT in seconds

RETURNED :

TDB1,TDB2 d TDB as a two-part Julian Date
J i status: 0 = OK

NOTES :

1. TT1+TT2 is Julian Date, apportioned in any convenient way between the two argu-
ments, for example where TT1 is the Julian Day Number and TT2 is the fraction of a
day. The returned TDB1, TDB2 follow suit.

2. The argument DTR represents the quasi-periodic component of the GR transformation
between TT and TCB. It is dependent upon the adopted solar-system ephemeris,
and can be obtained by numerical integration, by interrogating a precomputed time
ephemeris or by evaluating a model such as that implemented in the SOFA routine
iau_DTDB. The quantity is dominated by an annual term of 1.7 ms amplitude.

3. TDB is essentially the same as Teph, the time argument for the JPL solar system
ephemerides.

REFERENCES :

1. McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note
No. 32, BKG (2004).

2. IAU 2000 Resolution 3.
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iau_TTUT1 TT to UT1 iau_TTUT1

CALL :

CALL iau_TTUT1 ( TT1, TT2, DT, UT11, UT12, J )

ACTION :

Time scale transformation: Terrestrial Time, TT, to Universal Time, UT1.

GIVEN :

TT1,TT2 d TT as a two-part Julian Date
DT d TT−UT1 in seconds

RETURNED :

UT11,UT12 d UT1 as a two-part Julian Date
J i status: 0 = OK

NOTES :

1. TT1+TT2 is Julian Date, apportioned in any convenient way between the two argu-
ments, for example where TT1 is the Julian Day Number and TT2 is the fraction of a
day. The returned UT11, UT12 follow suit.

2. The argument DT is classical ∆T.

REFERENCE :

Seidelmann, P.K. (Ed.) (1992), Explanatory Supplement to the Astronomical Almanac,
University Science Books.
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iau_UT1TAI UT1 to TAI iau_UT1TAI

CALL :

CALL iau_UT1TAI ( UT11, UT12, DTA, TAI1, TAI2, J )

ACTION :

Time scale transformation: Universal Time, UT1, to International Atomic Time, TAI.

GIVEN :

UT11,UT12 d UT1 as a two-part Julian Date
DTA d UT1−TAI in seconds

RETURNED :

TAI1,TAI2 d TAI as a two-part Julian Date
J i status: 0 = OK

NOTES :

1. UT11+UT12 is Julian Date, apportioned in any convenient way between the two ar-
guments, for example where UT11 is the Julian Day Number and UT12 is the fraction
of a day. The returned TAI1, TAI2 follow suit.

2. The argument DTA, i.e. UT1−TAI, is an observed quantity, and is available from
IERS tabulations.

REFERENCE :

Seidelmann, P.K. (Ed.) (1992), Explanatory Supplement to the Astronomical Almanac,
University Science Books.
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iau_UT1TT UT1 to TT iau_UT1TT

CALL :

CALL iau_UT1TT ( UT11, UT12, DT, TT1, TT2, J )

ACTION :

Time scale transformation: Universal Time, UT1, to Terrestrial Time, TT.

GIVEN :

UT11,UT12 d UT1 as a two-part Julian Date
DT d TT−UT1 in seconds

RETURNED :

TT1,TT2 d TT as a two-part Julian Date
J i status: 0 = OK

NOTES :

1. UT11+UT12 is Julian Date, apportioned in any convenient way between the two ar-
guments, for example where UT11 is the Julian Day Number and UT12 is the fraction
of a day. The returned TT1, TT2 follow suit.

2. The argument DT is classical ∆T.

REFERENCE :

Seidelmann, P.K. (Ed.) (1992), Explanatory Supplement to the Astronomical Almanac,
University Science Books.
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iau_UT1UTC UT1 to UTC iau_UT1UTC

CALL :

CALL iau_UT1UTC ( UT11, UT12, DUT1, UTC1, UTC2, J )

ACTION :

Time scale transformation: Universal Time, UT1, to Coordinated Universal Time, UTC.

GIVEN :

UT11,UT12 d UT1 as a two-part Julian Date (Note 1)
DUT1 d ∆UT1: UT1−UTC in seconds (Note 2)

RETURNED :

UTC1,UTC2 d UTC as a two-part quasi Julian Date (Notes 3,4)
J i status: +1 = dubious year (Note 5)

0 = OK
−1 = unacceptable date

NOTES :

1. UT11+UT12 is Julian Date, apportioned in any convenient way between the two ar-
guments, for example where UT11 is the Julian Day Number and UT12 is the fraction
of a day. The returned UTC1 and UTC2 form an analogous pair, except that a special
convention is used, to deal with the problem of leap seconds – see Note 3.

2. ∆UT1 can be obtained from tabulations provided by the International Earth Rotation
and Reference Systems Service. The value changes abruptly by 1s at a leap second;
however, close to a leap second the algorithm used here is tolerant of the “wrong”
choice of value being made.

3. JD cannot unambiguously represent UTC during a leap second unless special mea-
sures are taken. The convention in the present routine is that the returned quasi
JD UTC1+UTC2 represents UTC days whether the length is 86399, 86400 or 86401 SI
seconds.

4. The routine iau_D2DTF can be used to transform the UTC quasi-JD into calendar
date and clock time, including UTC leap second handling.

5. The warning status “dubious year” flags UTCs that predate the introduction of the
time scale or that are too far in the future to be trusted. See the routine iau_DAT for
further details.

REFERENCES :

1. McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note
No. 32, BKG (2004).

2. Seidelmann, P.K. (Ed.) (1992), Explanatory Supplement to the Astronomical Al-
manac, University Science Books.
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iau_UTCTAI UTC to TAI iau_UTCTAI

CALL :

CALL iau_UTCTAI ( UTC1, UTC2, TAI1, TAI2, J )

ACTION :

Time scale transformation: Coordinated Universal Time, UTC, to International Atomic
Time, TAI.

GIVEN :

UTC1,UTC2 d UTC as a two-part quasi Julian Date (Notes 1-4)

RETURNED :

TAI1,TAI2 d TAI as a two-part Julian Date (Note 5)
J i status: +1 = dubious year (Note 3)

0 = OK
−1 = unacceptable date

NOTES :

1. UTC1+UTC2 is quasi Julian Date (see Note 2), apportioned in any convenient way
between the two arguments, for example where UTC1 is the Julian Day Number and
UTC2 is the fraction of a day.

2. JD cannot unambiguously represent UTC during a leap second unless special mea-
sures are taken. The convention in the present routine is that the JD day represents
UTC days whether the length is 86399, 86400 or 86401 SI seconds. In the 1960-1972
era there were smaller jumps (in either direction) each time the linear UTC(TAI)
expression was changed, and these “mini-leaps” are also included in the SOFA con-
vention.

3. The warning status “dubious year” flags UTCs that predate the introduction of the
time scale or that are too far in the future to be trusted. See the routine iau_DAT for
further details.

4. The routine iau_DTF2D converts from calendar date and time of day into two-part
Julian Date, and in the case of UTC implements the leap-second-ambiguity convention
described above.

5. The returned TAI1, TAI2 are such that their sum is the TAI Julian Date.

REFERENCES :

1. McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note
No. 32, BKG (2004).

2. Seidelmann, P.K. (Ed.) (1992), Explanatory Supplement to the Astronomical Al-
manac, University Science Books.
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iau_UTCUT1 UTC to UT1 iau_UTCUT1

CALL :

CALL iau_UTCUT1 ( UTC1, UTC2, DUT1, UT11, UT12, J )

ACTION :

Time scale transformation: Coordinated Universal Time, UTC, to Universal Time, UT1.

GIVEN :

UTC1,UTC2 d UTC as a two-part Julian Date (Notes 1-4)
DUT1 d ∆UT1: UT1−UTC in seconds (Note 5)

RETURNED :

UT11,UT12 d UT1 as a two-part quasi Julian Date (Note 6)
J i status: +1 = dubious year (Note 3)

0 = OK
−1 = unacceptable date

NOTES :

1. UTC1+UTC2 is quasi Julian Date (see Note 2), apportioned in any convenient way
between the two arguments, for example where UTC1 is the Julian Day Number and
UTC2 is the fraction of a day.

2. JD cannot unambiguously represent UTC during a leap second unless special mea-
sures are taken. The convention in the present routine is that the JD day represents
UTC days whether the length is 86399, 86400 or 86401 SI seconds.

3. The warning status “dubious year” flags UTCs that predate the introduction of the
time scale or that are too far in the future to be trusted. See the routine iau_DAT for
further details.

4. The routine iau_DTF2D converts from calendar date and time of day into two-part
Julian Date, and in the case of UTC implements the leap-second-ambiguity convention
described above.

5. ∆UT1 can be obtained from tabulations provided by the International Earth Rotation
and Reference Systems Service. It is the caller’s responsibility to supply a DUT1

argument containing the UT1−UTC value that matches the given UTC.

6. The returned UT11, UT12 are such that their sum is the UT1 Julian Date.
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