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1 Preliminaries

1.1 Introduction

SOFA stands for Standards Of Fundamental Astronomy. The SOFA software is a collection of
Fortran 77 and ANSI C subprograms that implement official IAU algorithms for fundamental-
astronomy computations. At the present time the SOFA software comprises 189 astronomy
functions supported by 55 utility functions that deal with angles, vectors and matrices and
called the SOFA vector-matrix library (VML). The core documentation for the SOFA collection
consists of classified and alphabetic lists of subroutine calls plus detailed preamble comments in
the source code of individual functions.

The present document concerns the VML angle/vector/matrix tools, that were either imple-
mented in the course of writing the astronomical functions or that were thought likely to be
useful in writing astronomical applications. Although in the wider context they are far from
exhaustive (there is for example no treatment of quaternions) they are at least a good starting
point. And as most are very short and simple, they could act as models for implementing similar
facilities in other programming languages.

Using the VML functions requires knowledge of vector/matrix methods, simple spherical trigonom-
etry, and methods of attitude representation. These topics are covered in many textbooks1, and
the present document does not pretend to be an ab initio tutorial. Its main objective is simply to
set out the SOFA functions in context and allow their names and calls to be quickly discovered.
Experienced users will seldom need to refer to anything more than the quick reference material
at the end, namely Sections 3.4 and 3.5. More complete information about a given function can
be found in Section 3.3, which is arranged alphabetically.

1.2 General principles

The SOFA VML consists mostly of functions which operate on ordinary Cartesian vectors
(x, y, z) and 3×3 rotation matrices, plus a few related to spherical angles. There is also support
for vectors that represent velocity as well as position and vectors that represent rotation instead
of position. Thus the array-based entities that SOFA uses are the following:

� “Position vectors” or “p-vectors” (which are just ordinary 3-vectors) are double[3].

� “Position/velocity vectors” or “pv-vectors” are double[2][3]. In terms of memory ad-
dress, the velocity components of a pv-vector follow the position components. Application
code is permitted to exploit this and all other knowledge of the internal layouts: that x, y
and z appear in that order and are in a right-handed Cartesian coordinate system etc. For
example, the iauCp function (copy a p-vector) can be used to copy the velocity component
of a pv-vector (indeed, this is how the iauCpv function is coded).

1For instance Spacecraft Attitude Determination and Control, JamesR.Wertz (ed.), Astrophysics and Space
Science Library, Vol. 73, D.Reidel Publishing Company, 1986.
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� “Rotation matrices” or “r-matrices” are double[3][3]. When used for rotation, they are
orthogonal; each row or column is a unit vector, and the inverse is equal to the transpose.
Most of the matrix functions do not assume that r-matrices are necessarily orthogonal and
in fact work on any 3× 3 matrix.

� “Rotation vectors” or “r-vectors” (or Euler vectors) are double[3]. Such vectors are a
combination of the Euler axis and angle and are convertible to and from r-matrices. The
direction is the axis of rotation and the magnitude is the angle of rotation, in radians.
Because the amount of rotation can be scaled up and down simply by multiplying the
vector by a scalar, r-vectors are useful for representing spins about an axis which is fixed.

The set of functions provided do not completely fill the range of operations that link all the
various vector and matrix options, but are with some exceptions limited to functions that are
required by SOFA’s astronomical software.
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2 Guide to the VML functions

This section outlines a number of positional-astronomy topics, for background and to provide a
context in which the various functions can be introduced.

2.1 Spherical trigonometry

Celestial phenomena occur at such vast distances from the observer that for most practical
purposes there is no need to work in 3D; only the direction of a source matters, not how far
away it is. Things can therefore be viewed as if they were happening on the inside of sphere with
the observer at the centre – the celestial sphere. Problems involving positions and orientations
in the sky can then be solved by using the formulas of spherical trigonometry, which apply to
spherical triangles, the sides of which are great circles.

Positions on the celestial sphere may be specified by using a spherical polar coordinate system,
defined in terms of some fundamental plane and a direction in that plane chosen to represent
zero longitude. Mathematicians usually work with the co-latitude, with zero at the principal
pole, whereas most astronomical coordinate systems use latitude, reckoned plus and minus from
the equator. Astronomical coordinate systems may be either right-handed (e.g. right ascension
and declination [α, δ ], galactic longitude and latitude [ lII , bII ]) or left-handed (e.g. hour angle
and declination [h, δ ]). In some cases different conventions have been used in the past, a
fruitful source of mistakes. Azimuth and geographical longitude are examples; azimuth is now
generally reckoned north through east (making a left-handed system); geographical longitude is
now usually taken to increase eastwards (a right-handed system) but astronomers at one time
employed a west-positive convention. In reports and program comments it is wise to spell out
what convention is being used, if there is any possibility of confusion.

When applying spherical trigonometry formulas, attention must be paid to rounding errors (for
example it is a bad idea to find a small angle through its cosine, as we shall see later) and to
the possibility of problems close to poles. Formulas that involve tangents and cotangents need
to be treated with particular care. Also, if a formulation relies on inspection to establish the
quadrant of the result, it is a sure sign that a vector-related method will be preferable.

Although SOFA includes many functions that work in terms of specific spherical coordinates such
as [α, δ ], only two functions that operate directly on generic spherical coordinates are provided:
iauSeps computes the angular separation between two points (i.e. the distance along a great
circle) and iauPas computes the bearing or position angle of one point seen from the other. As
a simple demonstration, we will use these two functions (and a spherical-Earth approximation)
to estimate the distance from London to Sydney and the initial compass heading:

#include <sofa.h>

#include <stdio.h>

#define R2D 57.2957795 /* radians to degrees */

#define RKM 6375.0 /* Earth radius in km */

int main ( )

{
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/* Longitudes and latitudes (radians) for London and Sydney. */

double al = -0.2/R2D, bl = 51.5/R2D,

as = 151.2/R2D, bs = -33.9/R2D;

/* Great-circle distance and initial heading. */

printf ( "%5.0f km,%4.0f deg\n", iauSeps(al,bl,as,bs)*RKM,

iauPas(al,bl,as,bs)*R2D );

return 0;

}

The result is range 17011 km, bearing 61◦ (towards Moscow).

The functions iauSepp (p62) and iauPap (p32) are equivalents of iauSeps (p63) and iauPas

(p33) but starting from p-vectors instead of spherical coordinates.

In view of what will be said later about the superiority of vector techniques, it should be noted
that the use of spherical trigonometry formulas in the SOFA collection is essentially nil.

2.1.1 Formatting angles

SOFA has functions for converting angles to and from sexagesimal form (hours, minutes, seconds
or degrees, arcminutes, arcseconds). These apparently straightforward operations contain hidden
traps which the SOFA functions avoid.

In that connection, an aspect that application developers need to address is how to go about
decoding numbers from a character string, such as might be entered using a keyboard. SOFA
at present offers no help with this, leaving the user to rely either on locally-developed libraries
or C’s low-level scanf facilities. A particular difficulty arises with sexagesimal formats, where it
is tempting simply to decode three numbers and apply the sign of the first to the final answer.
This is the notorious “minus zero” bug, where the string ′-0 ′ is received as (plus) zero and
the minus sign lost; consequently declinations etc. in the range 0◦ to −1◦ mysteriously migrate
to the range 0◦ to +1◦.2 The only solution is to eschew the number decoding facilities of the
programming language and resort instead to low-level character based techniques.

SOFA provides two functions for expressing an angle in radians in a preferred range:

� normalize radians to range 0 to 2π, iauAnpm (p23)

� normalize radians to range −π to +π, iauAnp (p22)

The first is suitable for hour angles and the second right ascension, for example. Six functions. . .

� decompose radians into degrees, arcminutes, arcseconds, iauA2af, p19

2For instance source ICRF J001611.0-001512 in Table 5 of Fey, A.L. et al., The Second Realization of the
International Reference Frame by Very Long Baseline Interferometry, Astronomical Journal, 150:58, 2015.
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� decompose radians into hours, minutes, seconds, iauA2tf, p20

� decompose days into hours, minutes, seconds, iauD2tf, p28

� degrees, arcminutes, arcseconds to radians, iauAf2a, p21

� hours, minutes, seconds to radians, iauTf2a, p66

� hours, minutes, seconds to days, iauTf2d, p67

. . . are provided to convert angles to and from sexagesimal form. They avoid the common
“inconsistent rounding” bug, which produces angles like 24h 59m 59s.999; they also avoid the
“minus zero” bug mentioned earlier. Here is code which displays an hour angle in radians,
awkwardly placed on the boundary between 0 and −1 hours, using two different resolutions:

#include <sofa.h>

#include <stdio.h>

int main ( )

{

double ha;

char sign;

int ihmsf[4];

ha = -0.261799315;

iauA2tf ( 3, ha, &sign, ihmsf );

printf ( "%c%2.2d %2.2d %2.2d.%3.3d\n",

sign, ihmsf[0], ihmsf[1], ihmsf[2], ihmsf[3] );

iauA2tf ( 2, ha, &sign, ihmsf );

printf ( "%c%2.2d %2.2d %2.2d.%2.2d\n",

sign, ihmsf[0], ihmsf[1], ihmsf[2], ihmsf[3] );

return 0;

}

The output is:

-00 59 59.999

-01 00 00.00

Note, however, that cases where rounding has moved the angle beyond the desired range will
need to be detected explicitly, by testing whether the first field has reached 24, 360, 180 etc. and
reacting appropriately.
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2.2 P-vectors and R-matrices

Readers will already be aware that the SOFA philosophy is to avoid spherical trigonometry
and instead favor vector methods. Many find this offputting. Given a positional-astronomy
problem to solve, they expect there to be a simple formula involving a few sines and cosines
that they can punch into a calculator to produce the required answers. The equivalent vector
expressions seem terse and unfriendly, and do not lend themselves to calculator evaluation.
Vector-based positional-astronomy texts are peppered with intimidating symbols set in heavy
type, and diagrams are few—an array of matrix elements, for example, lacks the intuitive appeal
of a picture showing the physical meaning of the various angles. However, in practice it turns out
that the vector methods are more powerful and better behaved than using spherical trigonometry,
and the terseness of expression is a compelling advantage as problems become more complex.

The starting point is to recognize that a spherical polar coordinate system is only one way
to describe the direction of an astronomical target. A convenient alternative is the sum of
three vectors at right angles, forming a system of Cartesian coordinates. The x- and y-axes lie
in the fundamental plane (e.g. the equator in the case of [α, δ ]), with the x-axis pointing to
zero longitude. The z-axis is normal to the fundamental plane and points towards the positive
(north) pole. The y-axis can lie in either of the two possible directions, depending on whether
the coordinate system is right-handed or left-handed. The three axes are sometimes called a
triad. For most applications involving arbitrarily distant objects such as stars, the vector which
defines the direction concerned is constrained to have unit length, no different to omitting the
distance for spherical coordinates. The x-, y- and z- components can be regarded as the scalar
(dot) product of this vector onto the three axes of the triad in turn. Because the vector is a
unit vector, each of the three dot-products is simply the cosine of the angle between the unit
vector and the axis concerned, and the three components are sometimes called direction cosines
for this reason.

For some applications, including those involving objects within the Solar System, unit vectors
are inappropriate, and it is necessary to use vectors scaled in length-units such as au, km etc.
In these cases the origin of the coordinate system might not be the observer, but instead be the
Sun, the Solar-System barycenter, the center of the Earth etc. But whatever the application,
the final direction in which the observer sees the object can always be expressed as a unit vector.

But what has all this achieved? Instead of two numbers—a longitude and a latitude—we now
have three numbers to look after, namely the x-, y- and z- components, whose quadratic sum
we have somehow to constrain to be unity. And, in addition to this apparent redundancy, most
people find it harder to visualize problems in terms of [x, y, z ] than in [ θ, ϕ ], as mentioned
above. Despite these objections, the vector approach turns out to have significant advantages
over the spherical trigonometry approach:

� Vector formulas tend to be much more succinct; one vector operation hides strings of sines
and cosines.

� The formulas are as a rule rigorous, even at the poles.

� Precision is maintained all over the celestial sphere. When one Cartesian component is
nearly unity and therefore insensitive to direction, the others automatically become small
and therefore relatively more precise: the precision is shared out.
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� Formulations usually deliver the quadrant of the result without the need for inspection,
an aspect delegated to the library function atan2).

A number of important transformations in positional astronomy turn out to be nothing more
than changes of coordinate system, something which is especially convenient if the vector ap-
proach is used. A direction with respect to one triad can be expressed relative to another triad
simply by multiplying the [x, y, z ] column vector by the appropriate 3× 3 orthogonal matrix (a
tensor of Rank 2, or dyadic). The three rows of this rotation matrix are the vectors in the old
coordinate system of the three new axes, and the transformation amounts to obtaining the dot-
product of the direction-vector with each of the three new axes. Conversely, the three columns
of the matrix are the vectors in the new coordinate system of the three original axes. Precession,
nutation, [h, δ ] to [Az,El ], [α, δ ] to [ lII , bII ] and so on are typical examples of the technique.
An especially convenient property of the rotation matrices is that they can be inverted simply
by taking the transpose.

The elements of these “p-vectors” and “r-matrices” are assorted combinations of the sines and
cosines of the various angles involved (right ascension, declination and so on, depending on
which transformation is being applied). If you write out the matrix multiplications in full you
get expressions which are essentially the same as the equivalent spherical trigonometry formulas.
Indeed, many of the standard formulas of spherical trigonometry are most easily derived by
expressing the problem initially in terms of vectors.

2.2.1 SOFA functions for vectors and matrices

Transformations between spherical and vector form, with support for both unit vectors (direction
cosines) and ones of specified length, are provided for by these functions:

� spherical to unit vector, iauS2c, p58

� unit vector to spherical, iauC2s, p24

� spherical to p-vector, iauS2p, p59

� p-vector to spherical, iauP2s, p31

An assortment of standard 3-vector operations (dot and cross products, add and subtract etc.)
are carried out by these functions:

� zero p-vector, iauZp, p71

� p-vector plus p-vector, iauPpp, p38

� p-vector minus p-vector, iauPmp, p35

� p-vector plus scaled p-vector, iauPpsp, p39

� inner (=scalar=dot) product of two p-vectors, iauPdp, p34
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� outer (=vector=cross) product of two p-vectors, iauPxp, p49

� modulus of p-vector, iauPm, p35

� normalize p-vector returning modulus, iauPn, p37

� multiply p-vector by scalar, iauSxp, p64

These functions make copies of 3-vectors and 3× 3 matrices:

� copy p-vector, iauCp, p25

� copy r-matrix, iauCr, p27

There are functions for 3× 3 matrix product and transpose:

� r-matrix multiply, iauRxr, p55

� transpose r-matrix, iauTr, p68

. . . and two for matrix-vector products:

� product of r-matrix and p-vector, iauRxp, p53

� product of transpose of r-matrix and p-vector, iauTrxp, p69

Initializing an r-matrix to null (all elements zero) or the identity matrix (diagonal elements
unity, otherwise zero) can be accomplished by calling either

� initialize r-matrix to null, iauZr, p73

� initialize r-matrix to identity, iauIr, p29

respectively. The latter is the first step when creating an r-matrix from Euler angles (successive
rotations about specified Cartesian axes—see Section. 3.2 for all the three-angle cases). Each
rotation can be applied by one of the functions. . .

� rotate r-matrix about x, iauRx, p52

� rotate r-matrix about y, iauRy, p56

� rotate r-matrix about z, iauRz, p57

In some cases (the construction of a bias-precession-nutation matrix is a good example) more
than three calls will be needed. Note that the order is all-important; it is a common blunder to
code an expression like Rx(ψ)Ry(θ)Rz(ϕ) by starting with Rx(ψ) and ending with Rz(ϕ) when
it is the reverse.

As a simple example of using a vector approach, the following code demonstrates how far an
International Celestial Reference Frame source has moved between successive issues, namely
ICRF2 and ICRF3:
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#include <sofa.h>

#include <stdio.h>

int main ()

{

double ra, da, rb, db, theta, a[3], b[3], axb[3], s, c;

/* RA,Dec of source ICRF J044238.6-001743 in the ICRF2 catalog. */

(void) iauTf2a ( '+', 04, 42, 38.66073910, &ra );

(void) iauAf2a ( '-', 00, 17, 43.4203921, &da );

/* RA,Dec of the same source in the ICRF3 (S/X) catalog. */

(void) iauTf2a ( '+', 04, 42, 38.66072366, &rb );

(void) iauAf2a ( '-', 00, 17, 43.4209582, &db );

/* Method 1: spherical trigonometry (cosine rule). */

theta = acos(sin(da)*sin(db) + cos(da)*cos(db)*cos(rb-ra));

printf ( "The two positions are %9.6f arcsec apart.\n",

theta*206264.80624709635515647335733 );

/* Method 2: vectors (sine and cosine from cross and dot product). */

iauS2c ( ra, da, a );

iauS2c ( rb, db, b );

iauPxp ( a, b, axb );

s = iauPm ( axb );

c = iauPdp ( a, b );

theta = atan2 ( s, c );

printf ( "The two positions are %9.6f arcsec apart.\n",

theta*206264.80624709635515647335733 );

return 0;

}

The output is:

The two positions are 0.000000 arcsec apart.

The two positions are 0.000612 arcsec apart.

The failure of the first method to deliver a useful answer is simply because cos θ of a small angle
is close to unity. The vector-based code ensures accurate performance at all ranges of angle by
computing both sine and cosine. This is the method used by the functions iauSeps (p63) and
iauSepp (p62), and of course the six statements of Method 2 could be replaced by a single call
to iauSeps without affecting the result.
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2.3 R-vectors

Rotation matrices are just one way of describing attitude, and have both advantages and disad-
vantages. The fact that they comprise nine numbers means there is clearly some redundancy,
and this is manifested as the requirement for each row and column to be a unit vector, a condi-
tion that will be compromised as rounding errors accumulate (and messy to renormalize). On
the other hand, once the nine numbers are available they can be used with complete efficiency
to reorient multiple vectors, something often needed in astronomical applications, for example
to apply precession to a list of star positions.

But other methods exist, each with their own set of pros and cons. Any rotation can be expressed
as Euler axis and angle, the former being the pole of rotation as a unit vector and the latter
the amount of rotation, a scalar; this representation is thus a total of four numbers. These
elements can be combined, two examples being Gibbs vectors and Euler symmetric parameters
or quaternions, neither of which SOFA uses. Gibbs vectors consist of only three numbers,
namely the Euler axis vector but scaled by the tangent of half the angle. A unit quaternion is
four numbers, one of which is the cosine of half the angle and the other three the Euler axis
scaled by the sine of half the angle.

Despite the fact that SOFA does not use them, quaternions are important and it is worth listing
some of their advantages:

� Quaternions are more compact (four numbers) than the r-matrix representation (nine
numbers), and as rounding errors build up renormalization is straightforward and efficient.

� The quaternion elements vary continuously over the unit sphere as the orientation changes,
avoiding discontinuous jumps and singularities.

� Translating a unit quaternion into the equivalent rotation matrix involves no trigonometric
functions.

� It is simple to combine two individual rotations represented as quaternions using a quater-
nion product, and this requires about half the arithmetic operations that combining two
rotation matrices does. (On the other hand rotating a vector takes about twice the arith-
metic operations than if a rotation matrix is used.)

The quaternion approach comes into its own for applications where computational efficiency is
paramount, many different rotations are in play at once, and smooth interpolation is required,
for example in computer games. It has less to offer to SOFA, which instead supplements its use
of r-matrices with a “rotation vector” scheme, which simply scales the Euler axis unit vector by
the angle in radians. The two techniques (quaternions and r-vectors) have much in common, and
while the r-vector approach sacrifices some computational efficiency compared with quaternions
it has its own set of advantages:

� Intuitive appeal—very easy to understand.

� An r-vector is completely non-redundant, comprising just three numbers.

� The numbers are independent, and the question of normalization does not arise.
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� Smooth interpolation at constant angular speed is trivial.

� Multiple rotations (i.e. where the angle is more than 2π) can be expressed.

To demonstrate the first point, consider the so-called “frame bias” between the International
Celestial Reference System and the J2000.0 mean equator and equinox triad. If we would like to
know (i) where on the celestial sphere the frame bias is zero and (ii) the maximum effect frame
bias can have on a star position, this is easy using r-vectors:3

#include <sofa.h>

#include <stdio.h>

int main ()

{

char sign;

int i4[4];

double rb[3][3], vb[3], angle, ra, dec;

/* Generate frame bias matrix. */

iauIr ( rb );

iauRz ( -0.0146*DAS2R, rb );

iauRy ( -0.041775*DAS2R * sin(84381.448*DAS2R), rb );

iauRx ( 0.0068192*DAS2R, rb );

/* Convert into r-vector form. */

iauRm2v ( rb, vb );

/* Report. */

iauP2s ( vb, &ra, &dec, &angle );

printf ( "Frame bias is %4.1f mas around", angle*1e3/DAS2R );

iauA2tf ( 1, iauAnp(ra), &sign, i4 );

printf ( "%3.2d %2.2d %2.2d.%d", i4[0], i4[1], i4[2], i4[3] );

iauA2af ( 0, dec, &sign, i4 );

printf ( " %c%2.2d %2.2d %2.2d GCRS.\n", sign, i4[0], i4[1], i4[2] );

return 0;

}

The resulting report is:

Frame bias is 23.1 mas around 19 29 14.8 -39 06 19 GCRS.

3For clarity, the code uses literal angles; a real application would either get them by calling iauBi00 or would
generate the matrix by calling iauPfw06 followed by iauFw2m.
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SOFA provides just two functions for dealing with r-vectors, namely the conversions between
r-matrix and r-vector:

� r-matrix to r-vector, iauRm2v, p50

� r-vector to r-matrix, iauRv2m, p51

2.4 PV-vectors

SOFA calls a 3-vector used to represent a direction (whether of unit length or not) a “p-vector”,
mainly to distinguish it from an r-vector, and the related functions (see Section 2.2.1) work on all
sorts of 3-vector, including for example changes of attitude by computing r-matrix × p-vector.
However, special additional support is provided for the common case where for a body in space
both position and velocity are available. This is SOFA’s “pv-vector”, which consists of a pair of
3-vectors containing [x, y, z ] and [ ẋ, ẏ, ż ] respectively.

The following functions are provided:

� zero a pv-vector, iauZpv, p72

� copy a pv-vector, iauCpv, p26

� create a pv-vector by appending zero velocity to a p-vector, iauP2pv, p30

� dispense with the velocity to leave a p-vector, iauPv2p, p40

� create a pv-vector from spherical coordinates, iauS2pv, p60

� transform a pv-vector into spherical coordinates, iauPv2s, p41

� add two pv-vectors together, iauPvppv, p45

� subtract one pv-vector from another, iauPvmpv, p44

� form the scalar product of two pv-vectors, iauPvdpv, p42

� form the vector product of two pv-vectors, iauPvxpv, p48

� find the modulus of a pv-vector i.e. extract distance and speed, iauPvm, p43

� multiply position and velocity by a scalar, iauSxpv, p65

� multiply position and velocity separately by different scalars, iauS2xpv, p61

� update the position part of a pv-vector, iauPvu, p46

� update the position part of a pv-vector returning only the position, iauPvup, p47

� product of r-matrix and pv-vector, iauRxpv, p54

� product of transpose of r-matrix and pv-vector, iauTrxpv, p70
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3 Reference material

3.1 SOFA vector-matrix conventions

When setting out vector and matrix expressions in mathematical notation there are choices to
be made about the relation of rows and columns and associated indices. In addition, computer
programming languages add further complications in that the order in which items are stored
in memory has to be decided.

Although the present document is tailored towards SOFA’s C implementation, it will be useful
to compare and contrast the two supported languages, the other being Fortran. This will not
only help developers who need to use both languages, but may also cast light on any choices
that may seem surprising in the context of one language or the other.

Setting out the conventions clearly will also provide an opportunity to present some of the
basic formulas. However, there will be no attempt to provide a comprehensive treatment of the
underlying algebra (what operations commute, how sums are formed, etc.), beyond stressing at
every opportunity that the order in which successive rotations are applied is crucial.

3.1.1 p-vectors

The convention for p-vectors is that they are considered to be column vectors:

a =

 x
y
z


It goes without saying that the three elements x, y and z occupy successive memory locations
in both C and Fortran.

The spatial length of the vector is called the modulus, given by the function iauPm:

|a| = (x2 + y2 + z2 )1/2

For a unit vector the modulus is 1, and the three components are direction cosines.

The formula for scalar product of two vectors a and b is:

a · b = axbx + ayby + azbz

The result is a scalar equal to |a||b| cos θ, where θ is the angle between the two vectors, and
hence for two unit vectors it is simply cos θ. Scalar product can be calculated by calling the
iauPdp function, p34.

The formula for vector product is:

a× b =

∣∣∣∣∣∣
i j k
ax ay az
bx by bz

∣∣∣∣∣∣ =
 aybz − azby

azbx − axbz
axby − aybx

 ,
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where i, j and k are the unit vectors forming the xyz triad. The result is a vector of magnitude
|a||b| sin θ, where θ is the angle between the two vectors, and with the direction given by the
“right-hand rule”, where a×b is the thumb, a is the forefinger and b is the middle finger. Thus
when a and b are both unit vectors, |a × b| is simply sin θ. Vector product can be calculated
by calling the iauPxp function, p49.

3.1.2 pv-vectors

For pv-vectors, the convention is that the two 3-vector components occupy successive triples
of memory locations, first position and then velocity. This is convenient because any of the
p-vector functions can be used to process either the position part or the velocity part without
the function having to know that it is part of a pv-vector. The consequence is that whereas in
C the dimensions are [2][3], in Fortran they are (3,2).

3.1.3 r-matrices

Writing the elements of a matrix R with indices i, j where i is row and j is column as follows:

R =

 R11 R12 R13

R21 R22 R23

R31 R32 R33

 ,

in Fortran these correspond to array elements: (1, 1) (1, 2) (1, 3)
(2, 1) (2, 2) (2, 3)
(3, 1) (3, 2) (3, 3)

 ,

and in C: [0][0] [0][1] [0][2]
[1][0] [1][1] [1][2]
[2][0] [2][1] [2][2]

 .

However, the memory storage order is different in the two languages. In Fortran the matrix
elements are stored in this order:

(1,1), (2,1), (3,1), (1,2), (2,2), (3,2), (1,3), (2,3), (3,3).

but in C the order is:

[0][0], [0][1], [0][2], [1][0], [1][1], [1][2], [2][0], [2][1], [2][2],
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In other words, in memory, successive triples are columns in Fortran and rows in C.

To refer a p-vector a to a different frame using rotation matrix R we evaluate the product
b = Ra thus: bx

by
bz

 =

 R11 ax +R12 ay +R13 az
R21 ax +R22 ay +R23 az
R31 ax +R32 ay +R33 az

 ,

which is what the function iauRxp (p53) does. The inverse transformation is a = R−1 b: ax
ay
az

 =

 R11 bx +R21 by +R31 bz
R12 bx +R22 by +R32 bz
R13 bx +R23 by +R33 bz

 ,

which is what iauTrxp (p69) does.

The matrix product C = BA takes matrix A and rotates it using matrix B to give matrix C;
as always, note the order. In terms of matrix elements:

C =

 A11B11 +A12B21 +A13B31 A11B12 +A12B22 +A13B32 A11B13 +A12B23 +A13B33

A21B11 +A22B21 +A23B31 A21B12 +A22B22 +A23B32 A21B13 +A22B23 +A23B33

A31B11 +A32B21 +A33B31 A31B12 +A32B22 +A33B32 A31B13 +A32B23 +A33B33

 ,

This is what the function iauRxr (p55) does.



16 3 REFERENCE MATERIAL

3.2 The twelve r-matrices

Any 3D reorientation can be broken into three successive “elemental” rotations about one or
other of the coordinate axes. Discounting degenerate cases where successive rotations are about
the same axis, there are twelve possible instances, six using all three axes and another six where
the first and third rotations are about the same axis.4

In the matrices listed on the next two pages, successive rotations are ϕ then θ then ψ about
coordinate axes i, j and k, and are formed by evaluating Rk(ψ)Rj(θ)Ri(ϕ) (note the order).
The three axes 123 are synonymous with xyz. Thus the matrix labeled 1-3-2 corresponds to
rotations ϕ about the x-axis, followed by θ about the z-axis followed by ψ about the y-axis,
giving the expression Ry(ψ)Rz(θ)Rx(ϕ). The most common choice in fundamental astronomy
applications is 3-1-3.

These explicit representations of the matrix elements are useful when solving an r-matrix for
one or more of the angles used in its formation.

The sign convention for the angles that SOFA uses is that they have positive values when they
represent a rotation that appears clockwise when looking in the positive direction of the axis.
Moreover SOFA uses rotations only to reorient the coordinate system, as opposed to rotating
the vector itself within a fixed coordinate system.

C code to form the 3-1-3 matrix might look like this:

double rm[3][3], phi, theta, psi;

slaIr ( rm );

slaRz ( phi, rm );

slaRx ( theta, rm );

slaRz ( psi, rm );

4SOFA calls the angles for all twelve axis sequences simply “Euler angles”, but various names are in use to
distinguish the two sets of six axis sequences, such as “Tait-Bryan angles” for the three-axis case and “proper”
or “classic” Euler angles when the same axis is used twice.
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Rz(ψ)Ry(θ)Rx(ϕ)
1-2-3

=

 cosψ cos θ cosψ sin θ sinϕ+ sinψ cosϕ − cosψ sin θ cosϕ+ sinψ sinϕ
− sinψ cos θ − sinψ sin θ sinϕ+ cosψ cosϕ sinψ sin θ cosϕ+ cosψ sinϕ

sin θ − cos θ sinϕ cos θ cosϕ



Ry(ψ)Rz(θ)Rx(ϕ)
1-3-2

=

 cosψ cos θ cosψ sin θ cosϕ+ sinψ sinϕ cosψ sin θ sinϕ− sinψ cosϕ
− sin θ cos θ cosϕ cos θ sinϕ

sinψ cos θ sinψ sin θ cosϕ− cosψ sinϕ sinψ sin θ sinϕ+ cosψ cosϕ



Rx(ψ)Rz(θ)Ry(ϕ)
2-3-1

=

 cos θ cosϕ sin θ − cos θ sinϕ
− cosψ sin θ cosϕ+ sinψ sinϕ cosψ cos θ cosψ sin θ sinϕ+ sinψ cosϕ
sinψ sin θ cosϕ+ cosψ sinϕ − sinψ cos θ − sinψ sin θ sinϕ+ cosψ cosϕ



Rz(ψ)Rx(θ)Ry(ϕ)
2-1-3

=

 cosψ cosϕ+ sinψ sin θ sinϕ sinψ cos θ − cosψ sinϕ+ sinψ sin θ cosϕ
− sinψ cosϕ+ cosψ sin θ sinϕ cosψ cos θ sinψ sinϕ+ cosψ sin θ cosϕ

cos θ sinϕ − sin θ cos θ cosϕ



Ry(ψ)Rx(θ)Rz(ϕ)
3-1-2

=

 cosψ cosϕ− sinψ sin θ sinϕ cosψ sinϕ+ sinψ sin θ cosϕ − sinψ cos θ
− cos θ sinϕ cos θ cosϕ sin θ

sinψ cosϕ+ cosψ sin θ sinϕ sinψ sinϕ− cosψ sin θ cosϕ cosψ cos θ



Rx(ψ)Ry(θ)Rz(ϕ)
3-2-1

=

 cos θ cosϕ cos θ sinϕ − sin θ
− cosψ sinϕ+ sinψ sin θ cosϕ cosψ cosϕ+ sinψ sin θ sinϕ sinψ cos θ
sinψ sinϕ+ cosψ sin θ cosϕ − sinψ cosϕ+ cosψ sin θ sinϕ cosψ cos θ
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Rx(ψ)Ry(θ)Rx(ϕ)
1-2-1

=

 cos θ sin θ sinϕ − sin θ cosϕ
sinψ sin θ cosψ cosϕ− sinψ cos θ sinϕ cosψ sinϕ+ sinψ cos θ cosϕ
cosψ sin θ − sinψ cosϕ− cosψ cos θ sinϕ − sinψ sinϕ+ cosψ cos θ cosϕ



Rx(ψ)Rz(θ)Rx(ϕ)
1-3-1

=

 cos θ sin θ cosϕ sin θ sinϕ
− cosψ sin θ cosψ cos θ cosϕ− sinψ sinϕ cosψ cos θ sinϕ+ sinψ cosϕ
sinψ sin θ − sinψ cos θ cosϕ− cosψ sinϕ − sinψ cos θ sinϕ+ cosψ cosϕ



Ry(ψ)Rx(θ)Ry(ϕ)
2-1-2

=

 cosψ cosϕ− sinψ cos θ sinϕ sinψ sin θ − cosψ sinϕ− sinψ cos θ cosϕ
sin θ sinϕ cos θ sin θ cosϕ

sinψ cosϕ+ cosψ cos θ sinϕ − cosψ sin θ − sinψ sinϕ+ cosψ cos θ cosϕ



Ry(ψ)Rz(θ)Ry(ϕ)
2-3-2

=

 cosψ cos θ cosϕ− sinψ sinϕ cosψ sin θ − cosψ cos θ sinϕ− sinψ cosϕ
− sin θ cosϕ cos θ sin θ sinϕ

sinψ cos θ cosϕ+ cosψ sinϕ sinψ sin θ − sinψ cos θ sinϕ+ cosψ cosϕ



Rz(ψ)Rx(θ)Rz(ϕ)
3-1-3

=

 cosψ cosϕ− sinψ cos θ sinϕ cosψ sinϕ+ sinψ cos θ cosϕ sinψ sin θ
− sinψ cosϕ− cosψ cos θ sinϕ − sinψ sinϕ+ cosψ cos θ cosϕ cosψ sin θ

sin θ sinϕ − sin θ cosϕ cos θ



Rz(ψ)Ry(θ)Rz(ϕ)
3-2-3

=

 cosψ cos θ cosϕ− sinψ sinϕ cosψ cos θ sinϕ+ sinψ cosϕ − cosψ sin θ
− sinψ cos θ cosϕ− cosψ sinϕ − sinψ cos θ sinϕ+ cosψ cosϕ sinψ sin θ

sin θ cosϕ sin θ sinϕ cos θ
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3.3 Function specifications

iauA2af radians to deg, arcmin, arcsec iauA2af

CALL :

iauA2af ( ndp, angle, &sign, idmsf );

ACTION :

Decompose radians into degrees, arcminutes, arcseconds, fraction.

GIVEN :

ndp int resolution (Note 1)
angle double angle in radians

RETURNED :

sign char ’+’ or ’-’
idmsf int[4] degrees, arcminutes, arcseconds, fraction

NOTES :

1. The argument ndp is interpreted as follows:

ndp resolution

: ...0000 00 00

-7 1000 00 00

-6 100 00 00

-5 10 00 00

-4 1 00 00

-3 0 10 00

-2 0 01 00

-1 0 00 10

0 0 00 01

1 0 00 00.1

2 0 00 00.01

3 0 00 00.001

: 0 00 00.000...

2. The largest positive useful value for ndp is determined by the size of angle, the format
of doubles numbers on the target platform, and the risk of overflowing idmsf[3]. On
a typical platform, for angle up to 2π, the available floating-point precision might
correspond to ndp = 12. However, the practical limit is typically ndp = 9, set by the
capacity of a 32-bit idmsf[3].

3. The absolute value of angle may exceed 2π. In cases where it does not, it is up to
the caller to test for and handle the case where angle is very nearly 2π and rounds
up to 360◦, by testing for idmsf[0] == 360 and setting idmsf[0-3] to zero.
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iauA2tf radians to hours, minutes, seconds iauA2tf

CALL :

iauA2tf ( ndp, angle, &sign, ihmsf );

ACTION :

Decompose radians into hours, minutes, seconds, fraction.

GIVEN :

ndp int resolution (Note 1)
angle double angle in radians

RETURNED :

sign char ’+’ or ’-’
ihmsf int[4] hours, minutes, seconds, fraction

NOTES :

1. The argument ndp is interpreted as follows:

ndp resolution

: ...0000 00 00

-7 1000 00 00

-6 100 00 00

-5 10 00 00

-4 1 00 00

-3 0 10 00

-2 0 01 00

-1 0 00 10

0 0 00 01

1 0 00 00.1

2 0 00 00.01

3 0 00 00.001

: 0 00 00.000...

2. The largest positive useful value for ndp is determined by the size of angle, the format
of doubles numbers on the target platform, and the risk of overflowing ihmsf[3]. On
a typical platform, for angle up to 2π, the available floating-point precision might
correspond to ndp = 12. However, the practical limit is typically ndp = 9, set by the
capacity of a 32-bit ihmsf[3].

3. The absolute value of angle may exceed 2π. In cases where it does not, it is up to
the caller to test for and handle the case where angle is very nearly 2π and rounds
up to 360◦, by testing for ihmsf[0] == 360 and setting idmsf[0-3] to zero.
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iauAf2a deg, arcmin, arcsec to radians iauAf2a

CALL :

j = iauAf2a ( s, ideg, iamin, asec, &rad );

ACTION :

Convert degrees, arcminutes, arcseconds to radians.

GIVEN :

s char sign: ’-’ = negative, otherwise positive
ideg int degrees
iamin int arcminutes
asec double arcseconds

RETURNED :

rad double angle in radians

RETURNED (function value) :

int status: 0 = OK
1 = ideg outside range 0-359
2 = iamin outside range 0-59
3 = asec outside range 0-59.999...

NOTES :

1. If the s argument is a string, only the leftmost character is used and no warning
status is provided.

2. The result is computed even if any of the range checks fail.

3. Negative ideg, iamin and/or asec produce a warning status, but the absolute value
is used in the conversion.

4. If there are multiple errors, the status value reflects only the first, the smallest taking
precedence.
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iauAnp normalize radians to range 0 to 2π. iauAnp

CALL :

d = iauAnp ( a );

ACTION :

Normalize angle into the range 0 ≤ a < 2π.

GIVEN :

a double angle (radians)

RETURNED (function value) :

double angle in range 0-2π
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iauAnpm normalize radians to range −π to +π iauAnpm

CALL :

d = iauAnpm ( a );

ACTION :

Normalize angle into the range −π ≤ a < +π.

GIVEN :

a double angle (radians)

RETURNED (function value) :

double angle in range ±π
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iauC2s unit vector to spherical iauC2s

CALL :

iauC2s ( p, &theta, &phi );

ACTION :

P-vector to spherical coordinates.

GIVEN :

p double[3] p-vector

RETURNED :

theta double longitude angle (radians)
phi double latitude angle (radians)

NOTES :

1. The vector p can have any magnitude; only its direction is used.

2. If p is null, zero theta and phi are returned.

3. At either pole, zero theta is returned.
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iauCp copy p-vector iauCp

CALL :

iauCp ( p, c );

ACTION :

Copy a p-vector.

GIVEN :

p double[3] p-vector to be copied

RETURNED :

c double[3] copy
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iauCpv copy pv-vector iauCpv

CALL :

iauCpv ( pv, c );

ACTION :

Copy a position/velocity vector.

GIVEN :

pv double[2][3] position/velocity vector to be copied

RETURNED :

c double[2][3] copy
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iauCr copy r-matrix iauCr

CALL :

iauCr ( r, c );

ACTION :

Copy an r-matrix.

GIVEN :

r double[3][3] r-matrix to be copied

RETURNED :

c double[3][3] copy
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iauD2tf days to hours, minutes, seconds iauD2tf

CALL :

iauD2tf ( ndp, days, &sign, ihmsf );

ACTION :

Decompose days to hours, minutes, seconds, fraction.

GIVEN :

ndp int resolution (Note 1)
days double interval in days

RETURNED :

sign char ’+’ or ’-’
ihmsf int[4] hours, minutes, seconds, fraction

NOTES :

1. The argument ndp is interpreted as follows:

ndp resolution

: ...0000 00 00

-7 1000 00 00

-6 100 00 00

-5 10 00 00

-4 1 00 00

-3 0 10 00

-2 0 01 00

-1 0 00 10

0 0 00 01

1 0 00 00.1

2 0 00 00.01

3 0 00 00.001

: 0 00 00.000...

2. The largest positive useful value for ndp is determined by the size of days, the format
of doubles on the target platform, and the risk of overflowing ihmsf[3]. On a typical
platform, for days up to 1.0, the available floating-point precision might correspond
to ndp = 12. However, the practical limit is typically ndp = 9, set by the capacity of a
32-bit ihmsf[4].

3. The absolute value of days may exceed 1.0. In cases where it does not, it is up to
the caller to test for and handle the case where days is very nearly 1.0 and rounds
up to 24 hours, by testing for ihmsf[0] == 24 and setting ihmsf[0-3] to zero.
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iauIr initialize r-matrix to identity iauIr

CALL :

iauIr ( r );

ACTION :

Initialize an r-matrix to the identity matrix.

RETURNED :

r double[3][3] r-matrix
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iauP2pv append zero velocity to p-vector iauP2pv

CALL :

iauP2pv ( p, pv );

ACTION :

Extend a p-vector to a pv-vector by appending a zero velocity.

GIVEN :

p double[3] p-vector

RETURNED :

pv double[2][3] pv-vector
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iauP2s p-vector to spherical iauP2s

CALL :

iauP2s ( p, &theta, &phi, &r );

ACTION :

P-vector to spherical polar coordinates.

GIVEN :

p double[3] p-vector

RETURNED :

theta double longitude angle (radians)
phi double latitude angle (radians)
r double radial distance

NOTES :

1. If p is null, zero theta, phi and r are returned.

2. At either pole, zero theta is returned.
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iauPap position-angle from p-vectors iauPap

CALL :

d = iauPap ( a, b );

ACTION :

Position-angle from two p-vectors.

GIVEN :

a double[3] direction of reference point
b double[3] direction of point whose PA is required

RETURNED (function value) :

double position angle of b with respect to a (radians)

NOTES :

1. The result is the position angle, in radians, of direction b with respect to direction a.
It is in the range −π to +π. The sense is such that if b is a small distance “north”
of a the position angle is approximately zero, and if b is a small distance “east” of a
the position angle is approximately +π/2.

2. a and b need not be unit vectors.

3. Zero is returned if the two directions are the same or if either vector is null.

4. If a is at a pole, the result is ill-defined.
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iauPas position-angle from spherical coordinates iauPas

CALL :

d = iauPas ( al, ap, bl, bp );

ACTION :

Position-angle from spherical coordinates.

GIVEN :

al double longitude of point A (e.g. RA) in radians
ap double latitude of point A (e.g. Dec) in radians
bl double longitude of point B
bp double latitude of point B

RETURNED (function value) :

double position angle of B with respect to A

NOTES :

1. The result is the bearing (position angle), in radians, of point B with respect to point
A. It is in the range −π to +π. The sense is such that if B is a small distance “east”
of point A, the bearing is approximately +π/2.

2. Zero is returned if the two points are coincident.
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iauPdp dot product of two p-vectors iauPdp

CALL :

d = iauPdp ( a, b );

ACTION :

p-vector inner (≡ scalar≡dot) product.

GIVEN :

a double[3] first p-vector
b double[3] second p-vector

RETURNED (function value) :

double scalar product a.b
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iauPm modulus of p-vector iauPm

CALL :

d = iauPm ( p );

ACTION :

Modulus of p-vector.

GIVEN :

p double[3] p-vector

RETURNED (function value) :

double modulus |p|
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iauPmp p-vector minus p-vector iauPmp

CALL :

iauPmp ( a, b, amb );

ACTION :

P-vector subtraction.

GIVEN :

a double[3] first p-vector
b double[3] second p-vector

RETURNED :

amb double[3] a− b

NOTE :

It is permissible to re-use the same array for any of the arguments.
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iauPn normalize p-vector returning modulus iauPn

CALL :

iauPn ( p, &r, u );

ACTION :

Convert a p-vector into modulus and unit vector.

GIVEN :

p double[3] p-vector

RETURNED :

r double modulus |p|
u double[3] unit vector p̂

NOTE :

If p is null, the result is null. Otherwise the result is a unit vector.
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iauPpp p-vector plus p-vector iauPpp

CALL :

iauPpp ( a, b, apb );

ACTION :

P-vector addition.

GIVEN :

a double[3] first p-vector
b double[3] second p-vector

RETURNED :

apb double[3] a+ b

NOTE :

It is permissible to re-use the same array for any of the arguments.
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iauPpsp p-vector plus scaled p-vector iauPpsp

CALL :

iauPpsp ( a, s, b, apsb );

ACTION :

P-vector plus scaled p-vector.

GIVEN :

a double[3] first p-vector
s double scalar (multiplier for b)
b double[3] second p-vector

RETURNED :

apsb double[3] a+ s× b

NOTE :

It is permissible for any of a, b and apsb to be the same array.



40 3 REFERENCE MATERIAL

iauPv2p discard velocity component of pv-vector iauPv2p

CALL :

iauPv2p ( pv, p );

ACTION :

Discard velocity component of a pv-vector.

GIVEN :

pv double[2][3] pv-vector

RETURNED :

p double[3] p-vector
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iauPv2s pv-vector to spherical iauPv2s

CALL :

iauPv2s ( pv, &theta, &phi, &r, &td, &pd, &rd );

ACTION :

Convert position/velocity from Cartesian to spherical coordinates.

GIVEN :

pv double[2][3] pv-vector

RETURNED :

theta double longitude angle (radians)
phi double latitude angle (radians)
r double radial distance
td double rate of change of theta
pd double rate of change of phi
rd double rate of change of r

NOTES :

1. If the position part of pv is null, theta, phi, td and pd are indeterminate. This is
handled by extrapolating the position through unit time by using the velocity part of
pv. This moves the origin without changing the direction of the velocity component.
If the position and velocity components of pv are both null, zeroes are returned for
all six results.

2. If the position is a pole, theta, td and pd are indeterminate. In such cases zeroes
are returned for all three.
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iauPvdpv dot product of two pv-vectors iauPvdpv

CALL :

iauPvdpv ( a, b, adb );

ACTION :

Inner (≡ scalar≡ dot) product of two pv-vectors.

GIVEN :

a double[2][3] first pv-vector
b double[2][3] second pv-vector

RETURNED :

adb double[2] a.b (see note)

NOTE :

If the position and velocity components of the two pv-vectors are (ap,av) and (bp,bv),
the result, a.b, is the pair of numbers (ap.bp,ap.bv + av.bp). The two numbers are the
dot-product of the two p-vectors and its derivative.
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iauPvm modulus of pv-vector iauPvm

CALL :

iauPvm ( pv, &r, &s );

ACTION :

Modulus of pv-vector.

GIVEN :

pv double[2][3] pv-vector

RETURNED :

r double modulus of position component
s double modulus of velocity component
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iauPvmpv pv-vector minus pv-vector iauPvmpv

CALL :

iauPvmpv ( a, b, amb );

ACTION :

Subtract one pv-vector from another.

GIVEN :

a double[2][3] first pv-vector
b double[2][3] second pv-vector

RETURNED :

amb double[2][3] a− b

NOTE :

It is permissible to re-use the same array for any of the arguments.
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iauPvppv pv-vector plus pv-vector iauPvppv

CALL :

iauPvppv ( a, b, apb );

ACTION :

Add one pv-vector to another.

GIVEN :

a double[2][3] first pv-vector
b double[2][3] second pv-vector

RETURNED :

apb double[2][3] a+ b

NOTE :

It is permissible to re-use the same array for any of the arguments.
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iauPvu update pv-vector iauPvu

CALL :

iauPvu ( dt, pv, upv );

ACTION :

Update a pv-vector.

GIVEN :

dt double time interval
pv double[2][3] pv-vector

RETURNED :

upv double[2][3] position part of pv updated, velocity part unchanged

NOTES :

1. “Update” means “refer the position component of the vector to a new date dt time
units from the existing date”.

2. The time units of dt must match those of the velocity.

3. It is permissible for pv and upv to be the same array.
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iauPvup update pv-vector discarding velocity iauPvup

CALL :

iauPvup ( dt, pv, p );

ACTION :

Update a pv-vector, discarding the velocity component.

GIVEN :

dt double time interval
pv double[2][3] pv-vector

RETURNED :

p double[3] p-vector

NOTES :

1. “Update” means “refer the position component of the vector to a new date dt time
units from the existing date”.

2. The time units of dt must match those of the velocity.
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iauPvxpv cross product of two pv-vectors iauPvxpv

CALL :

iauPvxpv ( a, b, axb );

ACTION :

Outer (≡ vector≡ cross) product of two pv-vectors.

GIVEN :

a double[2][3] first pv-vector
b double[2][3] second pv-vector

RETURNED :

axb double[2][3] a ∧ b

NOTES :

1. If the position and velocity components of the two pv-vectors are (ap, av) and (bp, bv),
the result, a ∧ b, is the pair of vectors (ap ∧ bp, ap ∧ bv + av ∧ bp). The two vectors
are the cross-product of the two p-vectors and its derivative.

2. It is permissible to re-use the same array for any of the arguments.
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iauPxp cross product of two p-vectors iauPxp

CALL :

iauPxp ( a, b, axb );

ACTION :

p-vector outer (≡ vector≡ cross) product.

GIVEN :

a double[3] first p-vector
b double[3] second p-vector

RETURNED :

axb double[3] a ∧ b

NOTE :

It is permissible to re-use the same array for any of the arguments.
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iauRm2v r-matrix to r-vector iauRm2v

CALL :

iauRm2v ( r, w );

ACTION :

Express an r-matrix as an r-vector.

GIVEN :

r double[3][3] rotation matrix

RETURNED :

w double[3] rotation vector (Note 1)

NOTES :

1. A rotation matrix describes a rotation through some angle about some arbitrary axis
called the Euler axis. The “rotation vector” returned by this function has the same
direction as the Euler axis, and its magnitude is the angle in radians. (The magnitude
and direction can be separated by means of the function iauPn.)

2. If r is null, so is the result. If r is not a rotation matrix the result is undefined.
r must be proper (i.e. have a positive determinant) and real orthogonal (inverse =
transpose).

3. The reference frame rotates clockwise as seen looking along the rotation vector from
the origin.
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iauRv2m r-vector to r-matrix iauRv2m

CALL :

iauRv2m ( w, r );

ACTION :

Form the r-matrix corresponding to a given r-vector.

GIVEN :

w double[3] rotation vector (Note 1)

RETURNED :

r double[3][3] rotation matrix

NOTES :

1. A rotation matrix describes a rotation through some angle about some arbitrary axis
called the Euler axis. The “rotation vector” supplied to this routine has the same
direction as the Euler axis, and its magnitude is the angle in radians.

2. If w is null, the unit matrix is returned.

3. The reference frame rotates clockwise as seen looking along the rotation vector from
the origin.
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iauRx rotate r-matrix about x axis iauRx

CALL :

iauRx ( phi, r );

ACTION :

Rotate an r-matrix about the x-axis.

GIVEN :

phi double angle ϕ (radians)

GIVEN and RETURNED :

r double[3][3] r-matrix, rotated

NOTES :

1. Calling this function with positive ϕ incorporates in the supplied r-matrix r an ad-
ditional rotation, about the x-axis, anticlockwise as seen looking towards the origin
from positive x.

2. The additional rotation can be represented by this matrix: 1 0 0
0 + cosϕ +sinϕ
0 − sinϕ +cosϕ
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iauRxp product of r-matrix and p-vector iauRxp

CALL :

iauRxp ( r, p, rp );

ACTION :

Multiply a p-vector by an r-matrix.

GIVEN :

r double[3][3] r-matrix
p double[3] p-vector

RETURNED :

rp double[3] r ∗ p

NOTE :

It is permissible for p and rp to be the same array.
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iauRxpv product of r-matrix and pv-vector iauRxpv

CALL :

iauRxpv ( r, pv, rpv );

ACTION :

Multiply a pv-vector by an r-matrix.

GIVEN :

r double[3][3] r-matrix
pv double[2][3] pv-vector

RETURNED :

rpv double[2][3] r ∗ pv

NOTES :

1. The algorithm is for the simple case where the r-matrix r is not a function of time.
The case where r is a function of time leads to an additional velocity component
equal to the product of the derivative of r and the position part of pv.

2. It is permissible for pv and rpv to be the same array.
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iauRxr r-matrix multiply iauRxr

CALL :

iauRxr ( a, b, atb );

ACTION :

Multiply two r-matrices.

GIVEN :

a double[3][3] first r-matrix
b double[3][3] second r-matrix

RETURNED :

atb double[3][3] a ∗ b

NOTE :

It is permissible to re-use the same array for any of the arguments.
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iauRy rotate r-matrix about y axis iauRy

CALL :

iauRy ( theta, r );

ACTION :

Rotate an r-matrix about the y-axis.

GIVEN :

theta double angle θ (radians)

GIVEN and RETURNED :

r double[3][3] r-matrix, rotated

NOTES :

1. Calling this function with positive θ incorporates in the supplied r-matrix r an ad-
ditional rotation, about the y-axis, anticlockwise as seen looking towards the origin
from positive y.

2. The additional rotation can be represented by this matrix: +cos θ 0 − sin θ
0 1 0

+ sin θ 0 + cos θ
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iauRz rotate r-matrix about z axis iauRz

CALL :

iauRz ( psi, r );

ACTION :

Rotate an r-matrix about the z-axis.

GIVEN :

psi d angle ψ (radians)

GIVEN and RETURNED :

r double[3][3] r-matrix, rotated

NOTES :

1. Calling this function with positive ψ incorporates in the supplied r-matrix r an ad-
ditional rotation, about the z-axis, anticlockwise as seen looking towards the origin
from positive z.

2. The additional rotation can be represented by this matrix: +cosψ +sinψ 0
− sinψ +cosψ 0

0 0 1
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iauS2c spherical to unit vector iauS2c

CALL :

iauS2c ( theta, phi, c );

ACTION :

Convert spherical coordinates to Cartesian.

GIVEN :

theta double longitude angle (radians)
phi double latitude angle (radians)

RETURNED :

c double[3] direction cosines
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iauS2p spherical to p-vector iauS2p

CALL :

iauS2p ( theta, phi, r, p );

ACTION :

Convert spherical polar coordinates to p-vector.

GIVEN :

theta d longitude angle (radians)
phi double latitude angle (radians)
r double radial distance

RETURNED :

p double[3] Cartesian coordinates
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iauS2pv spherical to pv-vector iauS2pv

CALL :

iauS2pv ( theta, phi, r, td, pd, rd, pv );

ACTION :

Convert position/velocity from spherical to Cartesian coordinates.

GIVEN :

theta double longitude angle (radians)
phi double latitude angle (radians)
r double radial distance
td double rate of change of theta
pd double rate of change of phi
rd double rate of change of r

RETURNED :

pv double[2][3] pv-vector
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iauS2xpv multiply pv-vector by two scalars iauS2xpv

CALL :

iauS2xpv ( s1, s2, pv, spv );

ACTION :

Multiply a pv-vector by two scalars.

GIVEN :

s1 double scalar to multiply position component by
s2 double scalar to multiply velocity component by
pv double[2][3] pv-vector

RETURNED :

spv double[2][3] pv-vector: p scaled by s1, v scaled by s2

NOTE :

It is permissible for pv and spv to be the same array.
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iauSepp angular separation from p-vectors iauSepp

CALL :

d = iauSepp ( a, b );

ACTION :

Angular separation between two p-vectors.

GIVEN :

a double[3] first p-vector (not necessarily unit length)
b double[3] second p-vector (not necessarily unit length)

RETURNED (function value) :

double angular separation (radians, always positive)

NOTES :

1. If either vector is null, a zero result is returned.

2. The angular separation is most simply formulated in terms of scalar product. How-
ever, this gives poor accuracy for angles near zero and π. The present algorithm uses
both cross product and dot product, to deliver full accuracy whatever the size of the
angle.
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iauSeps angular separation from spherical coordinates iauSeps

CALL :

d = iauSeps ( al, ap, bl, bp );

ACTION :

Angular separation between two sets of spherical coordinates.

GIVEN :

al double first longitude (radians)
ap double first latitude (radians)
bl double second longitude (radians)
bp double second latitude (radians)

RETURNED (function value) :

double angular separation (radians)
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iauSxp multiply p-vector by scalar iauSxp

CALL :

iauSxp ( s, p, sp );

ACTION :

Multiply a p-vector by a scalar.

GIVEN :

s double scalar
p double[3] p-vector

RETURNED :

sp double[3] s ∗ p

NOTE :

It is permissible for p and sp to be the same array.
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iauSxpv multiply pv-vector by scalar iauSxpv

CALL :

iauSxpv ( s, pv, spv );

ACTION :

Multiply a pv-vector by a scalar.

GIVEN :

s double scalar
pv double[2][3] pv-vector

RETURNED :

spv double[2][3] s ∗ pv

NOTE :

It is permissible for pv and spv to be the same array.
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iauTf2a hours, minutes, seconds to radians iauTf2a

CALL :

j = iauTf2a ( s, ihour, imin, sec, &rad );

ACTION :

Convert hours, minutes, seconds to radians.

GIVEN :

s c sign: ’-’ = negative, otherwise positive
ihour int hours
imin int minutes
sec double seconds

RETURNED :

rad double angle in radians

RETURNED (function value) :

int status: 0 = OK
1 = ihour outside range 0-23
2 = imin outside range 0-59
3 = sec outside range 0-59.999...

NOTES :

1. If the s argument is a string, only the leftmost character is used and no warning
status is provided.

2. The result is computed even if any of the range checks fail.

3. Negative ihour, imin and/or sec produce a warning status, but the absolute value
is used in the conversion.

4. If there are multiple errors, the status value reflects only the first, the smallest taking
precedence.
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iauTf2d hours, minutes, seconds to days iauTf2d

CALL :

j = iauTf2d ( s, ihour, imin, sec, &days );

ACTION :

Convert hours, minutes, seconds to days.

GIVEN :

s c sign: ’-’ = negative, otherwise positive
ihour int hours
imin int minutes
sec double seconds

RETURNED :

days double interval in days

RETURNED (function value) :

int status: 0 = OK
1 = ihour outside range 0-23
2 = imin outside range 0-59
3 = sec outside range 0-59.999...

NOTES :

1. If the s argument is a string, only the leftmost character is used and no warning
status is provided.

2. The result is computed even if any of the range checks fail.

3. Negative ihour, imin and/or sec produce a warning status, but the absolute value
is used in the conversion.

4. If there are multiple errors, the status value reflects only the first, the smallest taking
precedence.



68 3 REFERENCE MATERIAL

iauTr transpose r-matrix iauTr

CALL :

iauTr ( r, rt );

ACTION :

Transpose an r-matrix.

GIVEN :

r double[3][3] r-matrix

RETURNED :

rt double[3][3] transpose

NOTE :

It is permissible for r and rt to be the same array.
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iauTrxp product of r-matrix transpose and p-vector iauTrxp

CALL :

iauTrxp ( r, p, trp );

ACTION :

Multiply a p-vector by the transpose of an r-matrix.

GIVEN :

r double[3][3] r-matrix
p double[3] p-vector

RETURNED :

trp double[3] rT × p

NOTE :

It is permissible for p and trp to be the same array.
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iauTrxpv product of r-matrix transpose and pv-vector iauTrxpv

CALL :

iauTrxpv ( r, pv, trpv );

ACTION :

Multiply a pv-vector by the transpose of an r-matrix.

GIVEN :

r double[3][3] r-matrix
pv double[2][3] pv-vector

RETURNED :

trpv double[2][3] rT × pv

NOTES :

1. The algorithm is for the simple case where the r-matrix r is not a function of time.
The case where r is a function of time leads to an additional velocity component
equal to the product of the derivative of rT and the position part of pv.

2. It is permissible for pv and trpv to be the same array.
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iauZp zero p-vector iauZp

CALL :

iauZp ( p );

ACTION :

Zero a p-vector.

RETURNED :

p double[3] zero p-vector
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iauZpv zero pv-vector iauZpv

CALL :

iauZpv ( pv );

ACTION :

Zero a pv-vector.

RETURNED :

pv double[2][3] zero pv-vector
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iauZr initialize r-matrix to null iauZr

CALL :

iauZr ( r );

ACTION :

Initialize an r-matrix to the null matrix.

RETURNED :

r double[3][3] null r-matrix
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3.4 Classified list of functions

Operations involving p-vectors and r-matrices

initialize

iauZp ( p );

zero p-vector p71

iauZr ( r );

initialize r-matrix to null p73

iauIr ( r );

initialize r-matrix to identity p29

copy

iauCp ( p, c );

copy p-vector p25

iauCr ( r, c );

copy r-matrix p27

build rotations

iauRx ( phi, r );)

rotate r-matrix about x p52

iauRy ( theta, r );

rotate r-matrix about y p56

iauRz ( psi, r );

rotate r-matrix about z p57

spherical/Cartesian conversions

iauS2c ( theta, phi, c );

spherical to unit vector p58

iauC2s ( p, &theta, &phi );

unit vector to spherical p24

iauS2p ( theta, phi, r, p );

spherical to p-vector p59

iauP2s ( p, &theta, &phi, &r );

p-vector to spherical p31
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operations on p-vectors

iauPpp ( a, b, apb );

p-vector plus p-vector p38

iauPmp ( a, b, amb );

p-vector minus p-vector p36

iauPpsp ( a, s, b, apsb );

p-vector plus scaled p-vector p39

d = iauPdp ( a, b );

inner (=scalar=dot) product of two p-vectors p34

iauPxp ( a, b, axb );

outer (=vector=cross) product of two p-vectors p49

d = iauPm ( p );

modulus of p-vector p35

iauPn ( p, &r, u );

normalize p-vector returning modulus p37

iauSxp ( s, p, sp );

multiply p-vector by scalar p64

operations on r-matrices

iauRxr ( a, b, atb );

r-matrix multiply p55

iauTr ( r, rt );

transpose r-matrix p68

matrix-vector products

iauRxp ( r, p, rp );

product of r-matrix and p-vector p53

iauTrxp ( r, p, trp );

product of transpose of r-matrix and p-vector p69

separation and position-angle

d = iauSepp ( a, b );

angular separation from p-vectors p62

d = iauSeps ( al, ap, bl, bp );

angular separation from spherical coordinates p63

d = iauPap ( a, b );

position-angle from p-vectors p32

d = iauPas ( al, ap, bl, bp );

position-angle from spherical coordinates p33
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rotation vectors

iauRv2m ( p, r );

r-vector to r-matrix p51

iauRm2v ( r, p );

r-matrix to r-vector p50

Operations involving pv-vectors

initialize

iauZpv ( pv );

zero pv-vector p72

copy/extend/extract

iauCpv ( pv, c );

copy pv-vector p26

iauP2pv ( p, pv );

append zero velocity to p-vector p30

iauPv2p ( pv, p );

discard velocity component of pv-vector p40

spherical/Cartesian conversions

iauS2pv ( theta, phi, r, td, pd, rd, pv );

spherical to pv-vector p60

iauPv2s ( pv, &theta, &phi, &r, &td, &pd, &rd );

pv-vector to spherical p41

operations on pv-vectors

iauPvppv ( a, b, apb );

pv-vector plus pv-vector p45

iauPvmpv ( a, b, amb );

pv-vector minus pv-vector p44

iauPvdpv ( a, b, adb );

inner (=scalar=dot) product of two pv-vectors p42

iauPvxpv ( a, b, axb );

outer (=vector=cross) product of two pv-vectors p48

iauPvm ( pv, &r, &s );

modulus of pv-vector p43

iauSxpv ( s, pv, spv );

multiply pv-vector by scalar p65



3.4 Classified list of functions 77

iauS2xpv ( s1, s2, pv );

multiply pv-vector by two scalars p61

iauPvu ( dt, pv, upv );

update pv-vector p46

iauPvup ( dt, pv, p );

update pv-vector discarding velocity p47

matrix-vector products

iauRxpv ( r, pv, rpv );

product of r-matrix and pv-vector p54

iauTrxpv ( r, pv, trpv );

product of transpose of r-matrix and pv-vector p70

Operations on angles

wrap

d = iauAnp ( a );

normalize radians to range 0 to 2π p22

d = iauAnpm ( a );

normalize radians to range −π to +π p23

to sexagesimal

iauA2af ( ndp, angle, &sign, idmsf );

decompose radians into degrees, arcminutes, arcseconds p19

iauA2tf ( ndp, angle, &sign, ihmsf );

decompose radians into hours, minutes, seconds p20

iauD2tf ( ndp, days, &sign, ihmsf );

decompose days into hours, minutes, seconds p28

from sexagesimal

i = iauAf2a ( s, ideg, iamin, asec, &rad );

degrees, arcminutes, arcseconds to radians p21

i = iauTf2a ( s, ihour, imin, sec, &rad );

hours, minutes, seconds to radians p66

i = iauTf2d ( s, ihour, imin, sec, &days );

hours, minutes, seconds to days p67



78 3 REFERENCE MATERIAL

3.5 Calls: quick reference

iauA2af ( ndp, angle, &sign, idmsf ); p19

iauA2tf ( ndp, angle, &sign, ihmsf ); p20

i = iauAf2a ( s, ideg, iamin, asec, &rad ); p21

d = iauAnp ( a ); p22

d = iauAnpm ( a ); p23

iauC2s ( p, &theta, &phi ); p24

iauCp ( p, c ); p25

iauCpv ( pv, c ); p26

iauCr ( r, c ); p27

iauD2tf ( ndp, days, &sign, ihmsf ); p28

iauIr ( r ); p29

iauP2pv ( p, pv ); p30

iauP2s ( p, &theta, &phi, &r ); p31

d = iauPap ( a, b ); p32

d = iauPas ( al, ap, bl, bp ); p33

d = iauPdp ( a, b ); p34

d = iauPm ( p ); p35

iauPmp ( a, b, amb ); p36

iauPn ( p, &r, u ); p37

iauPpp ( a, b, apb ); p38

iauPpsp ( a, s, b, apsb ); p39

iauPv2p ( pv, p ); p40

iauPv2s ( pv, &theta, &phi, &r, &td, &pd, &rd ); p41

iauPvdpv ( a, b, adb ); p42

iauPvm ( pv, &r, &s ); p43

iauPvmpv ( a, b, amb ); p44

iauPvppv ( a, b, apb ); p45

iauPvu ( dt, pv, upv ); p46

iauPvup ( dt, pv, p ); p47

iauPvxpv ( a, b, axb ); p48

iauPxp ( a, b, axb ); p49

iauRm2v ( r, p ); p50

iauRv2m ( p, r ); p51

iauRx ( phi, r ); p52

iauRxp ( r, p, rp ); p53

iauRxpv ( r, pv, rpv ); p54

iauRxr ( a, b, atb ); p55

iauRy ( theta, r ); p56

iauRz ( psi, r ); p57

iauS2c ( theta, phi, c ); p58

iauS2p ( theta, phi, r, p ); p59

iauS2pv ( theta, phi, r, td, pd, rd, pv ); p60

iauS2xpv ( s1, s2, pv ); p61

d = iauSepp ( a, b ); p62
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d = iauSeps ( al, ap, bl, bp ); p63

iauSxp ( s, p, sp ); p64

iauSxpv ( s, pv, spv ); p65

i = iauTf2a ( s, ihour, imin, sec, &rad ); p66

i = iauTf2d ( s, ihour, imin, sec, &days ); p67

iauTr ( r, rt ); p68

iauTrxp ( r, p, trp ); p69

iauTrxpv ( r, pv, trpv ); p70

iauZp ( p ); p71

iauZpv ( pv ); p72

iauZr ( r ); p73


	Preliminaries
	Introduction
	General principles

	Guide to the VML functions
	Spherical trigonometry
	Formatting angles

	P-vectors and R-matrices
	SOFA functions for vectors and matrices

	R-vectors
	PV-vectors

	Reference material
	SOFA vector-matrix conventions
	p-vectors
	pv-vectors
	r-matrices

	The twelve r-matrices
	Function specifications
	iauA2af
	iauA2tf
	iauAf2a
	iauAnp
	iauAnpm
	iauC2s
	iauCp
	iauCpv
	iauCr
	iauD2tf
	iauIr
	iauP2pv
	iauP2s
	iauPap
	iauPas
	iauPdp
	iauPm
	iauPmp
	iauPn
	iauPpp
	iauPpsp
	iauPv2p
	iauPv2s
	iauPvdpv
	iauPvm
	iauPvmpv
	iauPvppv
	iauPvu
	iauPvup
	iauPvxpv
	iauPxp
	iauRm2v
	iauRv2m
	iauRx
	iauRxp
	iauRxpv
	iauRxr
	iauRy
	iauRz
	iauS2c
	iauS2p
	iauS2pv
	iauS2xpv
	iauSepp
	iauSeps
	iauSxp
	iauSxpv
	iauTf2a
	iauTf2d
	iauTr
	iauTrxp
	iauTrxpv
	iauZp
	iauZpv
	iauZr

	Classified list of functions
	Operations involving p-vectors and r-matrices
	Operations involving pv-vectors
	Operations on angles

	Calls: quick reference


